首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
高温平板上过冷水喷流冲击沸腾传热的最小热流密度点   总被引:1,自引:0,他引:1  
运用两相流边界层理论,对高温平板上过冷水自由喷流沸腾传热曲线最小热流密度点所对应的稳定蒸汽层内蒸汽极限流动条件进行了理论假定,得到了计算最小热流密度点热流密度和壁面过热度的半理论式.公式系数利用现有实验数据拟舍得到.研究发现,最小热流密度与壁面过热度、喷流雷诺数的平方根成正比,而与喷流直径成反比.最小热流密度点的壁面过热度基本只与水过冷度线性相关.半理论半经验式能较好地预示实验结果.  相似文献   

2.
用淬冷法确定饱和液氮中的池沸腾热流密度曲线   总被引:2,自引:0,他引:2  
用直径为50mm、厚度为12mm的铜平板在液氮中进行了不同热面方位角的淬冷沸腾实验,各方位角为θ=0°(热面向下)、10°、20°、30°、50°和90°(热面垂直);随着方位角的增加,临界热流密度、最小膜态沸腾热流密度及其壁面过热度相应地增加,且在方位角θ<30°时,θ对上述参数的影响更大;得出qCHF、qmin与方位角的关系式.  相似文献   

3.
圆形液体浸没射流冲击核沸腾传热的实验研究   总被引:1,自引:0,他引:1  
以R113为工质,通过实验系统研究了圆形浸没射流冲击下射流出口速度、喷嘴直径、喷嘴至冲击板距离、液体流动方向及过冷度等对核沸腾传热曲线及临界热流密度的影响.结果表明:同一过冷度下的池核沸腾和冲击核沸腾曲线可以用统一的关联式来表达;提出的过渡沸腾传热表达式可以很好的用来关联实验数据;而临界热流密度随着速度增加及离驻点距离的减小而提高.  相似文献   

4.
纳米流体池内沸腾时传热面上的吸附和烧结现象   总被引:1,自引:0,他引:1  
对纳米流体池内核态沸腾进行了研究.沸腾传热面为水平加热面,基液使用蒸馏水和乙醇,纳米颗粒使用CuO和SiO2,扩散剂使用十二烷基苯磺酸钠(SDBS).实验发现:对于添加了扩散剂的水基纳米流体,在壁温超过大约112℃后,传热面上出现烧结层,沸腾实验无法继续进行;没有添加扩散剂时,传热面上有极薄的颗粒吸附层形成,表面粗糙度和固液接触角都减小,可以获得完整的核态沸腾曲线,换热特性比纯水有所降低,临界热流密度有较大增加;对于乙醇纳米流体,无论是否添加扩散剂,传热面上都没有出现烧结层.实验以扩散剂对池内核态沸腾换热表面特性的影响为研究重点,证明了壁温和扩散剂是产生传热面烧结现象的主要因素.  相似文献   

5.
随喷雾流量及过热度增加,热流密度增大,但热表面中心干涸区变大、液膜覆盖区减小,表面利用率降低,传热性能有提升空间。基于此,通过改变单喷嘴高度、设计微孔阵列喷嘴两种途径,探讨热表面液膜均匀性和喷雾冲击强度对传热的影响规律。结果表明单喷嘴高度存在最佳值(4 mm),此时热表面无干涸区,喷雾冷却沸腾传热性能最强;与喷嘴高度6 mm相比,在喷雾流量为50 mL/min、过热度为20 K时,热流密度提高了13%;微孔阵列喷嘴形成的液膜分布更均匀,使得表面温度也较均匀,当过热度大于10 K,微孔阵列喷雾传热性能更优,比上述工况下单喷嘴的热流密度提高16%。强烈冲击的均匀薄液膜是决定喷雾冷却沸腾传热的关键,为进一步强化喷雾冷却沸腾传热提供了可行的方向。  相似文献   

6.
随喷雾流量及过热度增加,热流密度增大,但热表面中心干涸区变大、液膜覆盖区减小,表面利用率降低,传热性能有提升空间。基于此,通过改变单喷嘴高度、设计微孔阵列喷嘴两种途径,探讨热表面液膜均匀性和喷雾冲击强度对传热的影响规律。结果表明:单喷嘴高度存在最佳值(4 mm),此时热表面无干涸区,喷雾冷却沸腾传热性能最强;与喷嘴高度6 mm相比,在喷雾流量为50 mL/min、过热度为20 K时,热流密度提高了13%;微孔阵列喷嘴形成的液膜分布更均匀,使得表面温度也较均匀,当过热度大于10 K,微孔阵列喷雾传热性能更优,比上述工况下单喷嘴的热流密度提高16%。强烈冲击的均匀薄液膜是决定喷雾冷却沸腾传热的关键,为进一步强化喷雾冷却沸腾传热提供了可行的方向。  相似文献   

7.
火箭发动机液氢预冷回路非稳态传热特性研究   总被引:1,自引:1,他引:0  
针对液氢预冷火箭发动机自然循环回路的流动与传热过程,建立了一维非稳态均相模型来研究预冷过程中管路的温降特性.在膜态沸腾阶段引入过渡膜态沸腾,保证了弥散流膜态沸腾向反环状流膜态沸腾的合理过渡.一般流体的膜态沸腾起始壁温T_L大于核态沸腾最高壁温T_(CHF),而氢的T_L小于T_(CHF),使得氢的沸腾曲线不同于其他流体,造成计算时传热与流型转换的不连续,因此考虑以T_(CHF)作为膜态沸腾起始壁温,以T_L作为核态沸腾最高壁温,通过增加过渡沸腾区来确保计算顺利进行.计算发现:预冷过程中,回路管壁温沿流动方向表现出从高到低的逆向分布规律,最高壁温点位于反环状流向弥散流过渡区间处,最高壁温点位置随时间逐渐向下游推进.  相似文献   

8.
利用微机电系统(MEMS)加工技术,在梯形微通道内集成特定形状(60 μm×100 μm)的Pt微加热器,通过改变脉冲加热电压及水的流速,采用高速摄像机观察并记录微加热器表面的流动沸腾现象,根据脉冲宽度2 ms下不同流速及热流时微加热器表面的核态沸腾及膜态沸腾现象得到了沸腾流型图.结果表明:在一定流速条件下,随着微加热器的热流增加,核态沸腾及膜态沸腾相继出现在微加热器表面,且核态沸腾开始向膜态沸腾转变;同时,增加水的流速,可使微加热器上发生核态沸腾及膜态沸腾所需的热流量增大.  相似文献   

9.
水在水平管束管外池沸腾传热的实验研究   总被引:4,自引:0,他引:4  
通过对水在水平管束管外池沸腾的实验研究,探讨了沸腾换热系数随热流密度及沿管排高度变化的规律和内在机理.由实验结果发现:管束中各排测量管的沸腾换热系数明显高于单管池沸腾的情况;管束沸腾时存在管束效应,即随管排位置增高,起始沸腾点提前,沸腾曲线上移,沸腾换热系数增大;这种管束效应在部分核态沸腾时较强,而在充分发展核态沸腾时较弱;管束池沸腾的强化传热应归因于“滑移汽泡”及“诱发自然循环对流”机制.此外,还得出了管束池沸腾换热系数的经验关系式.  相似文献   

10.
水在水平管束管外池沸腾传热的实验研究   总被引:2,自引:0,他引:2  
通过对水在水平管束管外池沸腾的实验研究,探讨了沸腾换热系数随热流密度及沿管排高度变化的规律和内在机理.由实验结果发现管束中各排测量管的沸腾换热系数明显高于单管池沸腾的情况;管束沸腾时存在管束效应,即随管排位置增高,起始沸腾点提前,沸腾曲线上移,沸腾换热系数增大;这种管束效应在部分核态沸腾时较强,而在充分发展核态沸腾时较弱;管束池沸腾的强化传热应归因于“滑移汽泡”及“诱发自然循环对流”机制.此外,还得出了管束池沸腾换热系数的经验关系式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号