首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从最基本的力学平衡方程出发获得了适应于任意磁膜/基底厚度比、自由端施加点荷载的磁膜-基底悬臂梁系统弯曲问题的严格解, 针对材料的几何参数和物理参数着重分析研究了构成微致动器悬臂梁的设计与优化问题, 给出了微致动器应用的最佳条件, 并澄清了一些理论问题. 结果表明: 当基底厚度固定时, 磁膜和基底厚度之比越大, 悬臂梁的带载能力越强, 即输出力越大; 而当悬臂梁整体厚度固定时, 其自由端的输出力将出现唯一的极大值, 此极大值随着材料强度比的增加将减小, 同时相应的厚度比将减小. 无论是基底的还是整体的厚度固定, 悬臂梁中两种材料的Poisson比对其自由端输出力的影响都很大, 不可忽略.  相似文献   

2.
用高真空电子束蒸发方法制备了以半导体材料Si为过渡层的Co/Cu/Co三明治膜.研究了不同厚度的Si过渡层对三明治膜巨磁电阻效应的影响,发现三明治膜巨磁电阻在过渡层厚度达到0.9 nm时表现出明显的各向异性,而过渡层厚度小于0.9 nm时基本上呈各向同性. 巨磁电阻的各向异性行为可由三明治膜的平面内磁各向异性解释.在Si过渡层和金属Co层的界面处相互扩散形成具有(301)择优取向的Co  相似文献   

3.
从原子结合能和位错生成能入手,分别计算了在Co基底上沉积Cu薄膜和在Cu基底上沉积Co薄膜时,薄膜结构随沉积厚度增加所发生的变化.结果表明,在{100}纤维织构的Co基底上沉积Cu薄膜,当薄膜厚度达到3.33 nm时会在薄膜与基底界面产生错配位错,且随薄膜厚度增加,错配位错密度逐渐增大.在{100}纤维织构Cu基底上沉积Co薄膜,当薄膜厚度达到4.90 nm时,薄膜生长模式会由层状向岛状转变,薄膜为fcc结构.当厚度超过12.64 nm后会出现hcp结构.计算结果与实验得出的结论基本相符.  相似文献   

4.
用高真空电子束蒸发方法制备了以半导体材料Si为过渡层的Co/Cu/Co三明治膜,研究了不同厚度的Si过渡层对三明治膜巨磁电阻效应的影响,发现三明治膜巨磁电阻在过渡层厚度达到0.9nm时表现出明显的各向异性,而过渡层工小于0.9nm时基本上呈各向同性,巨磁电阻的各向异性可由三明治膜的平面内磁各向异性解释,在Si过渡层和金属Co层的界面处相互扩散形成具有(301)择优取向的Co2Si诱导了三明治膜的这  相似文献   

5.
"柔软接触"在自然界和工业应用的摩擦副中具有重要学术和应用价值,但线接触副中接触率的原位测量目前尚无系统方法.本文建立了含光学显微、数字图像采集的软摩擦试验台.通过对接触率不同影响因素的深入分析,对比讨论了试验结果和理论模型.法向载荷对接触率影响规律可表述为幂函数,且受到弹性模量的影响.本文结合Ghatak的柔软橡胶薄层力学模型,分析了柔软材料的弹性模量对接触率的具体影响规律.本文以上述分析为基础,针对实际应用中柔软材料几何尺寸差异的问题,制备了9种不同厚度的圆柱形弹性样品,试验和理论分析都发现临界厚度值将影响接触率,并对结果进行了讨论.最后对全文进行了总结和展望.  相似文献   

6.
应力水平对3D C/C复合材料的弯弯疲劳损伤模式的影响   总被引:1,自引:0,他引:1  
测定了3D C/C复合材料的弯弯疲劳寿命曲线以及疲劳加载过程中的载荷-挠度回滞曲线, 通过试件实物照片和SEM疲劳断口分析, 研究了在不同应力水平下材料的损伤模式. 研究结果表明, 3D C/C复合材料的弯弯疲劳极限为203 MPa, 应力水平为静弯曲强度的92%, 远高于2D C/C复合材料. 随应力水平的提高, 材料的疲劳载荷-挠度回滞曲线由弹性滞后环向非弹性滞后环转化, 挠度显著增加. 揭示了纤维与基体界面的滑动磨损在疲劳失效中起重要的作用, 应力水平的高低控制着这种滑动磨损的程度和速度.  相似文献   

7.
电解液穿过离子交换膜的传质现象会导致全钒液流电池性能和寿命降低.作为重要设计参数,膜厚度是影响膜内离子传输的主要因素.本文使用结合了Donnan效应的钒电池一维传质模型,通过数值模拟方法考察离子交换膜厚度对膜内传质控制作用的影响,并得到电池性能的变化规律.结果显示:电池库伦效率随膜厚度变化呈三个阶段.膜厚度较小时,库伦效率恶化严重;膜厚度适中时,库伦效率随膜厚度增加而明显提升;膜厚度较大时,库伦效率随膜厚度增加趋缓.研究发现,随电池运行膜两侧溶液电势差逐渐达到稳定状态,这一过程受初始膜两侧氢离子浓度差和膜厚度控制.此外,膜厚度越小,膜内钒离子流量越大,其作用机制转为扩散主导;随充放电进行,迁移作用受膜两侧浓差平衡电势差影响.  相似文献   

8.
高超声速溢流液膜冷却是一种新型的飞行器热防护方法,还处于探索阶段,液膜厚度作为最基本的参数,对研究液膜形成条件、冷却机理、冷却性能评估等方面具有重要的意义.针对膜厚测量的基本问题,总结各研究领域内相关的方法,并对各方法应用于高超声速溢流液膜冷却实验的可行性进行了详细的分析和讨论,筛选确定了利用电导法测量高超声速溢流液膜厚度.在高超声速激波风洞来流Ma=6的条件下,开展了15°楔模型溢流液膜冷却实验,利用电导法测量液膜建立过程中液膜厚度的变化,验证了电导法测量溢流液膜厚度的可行性,并对高超声速条件下的溢流液膜流动特性进行了初步分析.  相似文献   

9.
分析1967 ~ 1998年间数据较完整的所有70个磁云边界的飞船观测, 提出磁云边界新定义: 它是磁云与背景介质相互作用形成的边界层. 物理特征是: 外边界多是磁重联边界, 温度、密度和等离子体 b 参数多呈现“三高状态”, 内边界是磁云本体未受相互作用影响的边界, 温度、密度和等离子体 b 参数多呈现“三低”状态. 磁云前、后边界层的平均厚度为1.7和3.1 h. 边界层内磁场的分布函数与背景介质和磁云本体有重要变化发生.  相似文献   

10.
在对静电场与细胞相互作用建模和跨膜电位计算的基础上,基于能斯托公式和玻尔兹曼公式,给出静电场对椭球细胞离子跨膜迁移量影响的分析方法,并就静电场对不同类型椭球细胞离子跨膜迁移量变化的影响进行数值分析.研究发现:静电场在细胞表面不同位置引起的跨膜离子迁移量不同;随外场方向角α、椭球半轴比值ρ增加,静电场引起的细胞膜一侧离子浓度相对无外场作用,其比值的最大值逐渐减少,最大值对应位置θ_(max)逐渐增加;在外场强度、细胞表面积或体积一定条件下,ρ值越大,则对应的θ_(max)值越大;对于含乘性白噪声的静电场,场强度越大、信噪比越小,则离子浓度相对变化量越大.电场影响椭球细胞离子的跨膜迁移量引起细胞介质极化.  相似文献   

11.
本文工作主要包括三部分:1)将有限变形动力学中的最小加速度原理应用于静力学问题,建立了火载荷作用下两端受约束钢梁问题的控制方程和计算模型,该模型考虑了大挠度效应,也涉及热膨胀变形效应,并配合包含温度效应的本构方程,因此形成对钢梁火灾行为进行数值模拟的动力有限差分法,能够充分描述钢梁受火作用下的大挠度行为和悬链线效应.与文献中已有方法相比,本文方法简单有效,并可容易地发展以用于爆炸和火载荷共同作用下钢梁行为的分析.初步数值结果比较表明,所给出的方法是有效和可靠的.2)利用该方法,本文详细比较了应用几种不同的热膨胀变形公式和材料强度、刚度折减系数公式后所给出的不同的位移响应结果,分析了这些参数对临界温度的影响.3)在对包含轴力和弯矩的屈服函数和轴力随温度变化规律分析的基础上,明确提出确定两端完全约束大挠度钢梁极限温度(或称失效温度)的两个准则,即分别由悬链轴力开始出现和达到最大值以确定两个相应的极限温度,而数值结果还表明,这样定义的两个极限温度与分别相应于最大挠度等于L/20和L/10的临界温度是接近的,该结论对于钢梁进行合理的抗火设计是很有益的.  相似文献   

12.
为分析有轨电车嵌入式轨道复合地基关键参数并获得最优参数组合,采用有限单元法,建立嵌入式轨道复合地基计算模型.在既有研究的基础之上,采用正交试验方法研究了道床板厚度、支承层厚度、桩身弹性模量、桩径、桩纵向间距这5个关键影响因素对嵌入式轨道复合地基受力和变形的影响,并分别采用极差分析和方差分析对计算结果进行了分析,从而得到了关键影响因素和最优参数组合.结果表明:采用正交试验方法,可以在保证分析结果正确性的基础之上大大减少试验次数;桩身弹性模量对钢轨竖向位移影响最大,支承层厚度对道床板纵向弯矩影响最大,桩径对钢轨竖向位移影响较大;桩纵向间距对钢轨竖向位移、轨道纵向弯矩和支承层纵向拉应力的影响均极显著,故在确定桩纵向间距取值时,应综合考虑轨道结构的服役性能和复合地基的工程造价;最佳有轨电车嵌入式轨道水泥土搅拌桩复合地基设计方案为道床板厚度0.20 m、支承层厚度0.26 m、桩身弹性模量280 MPa、桩径0.75 m、桩纵向间距1.40 m.本研究成果对有轨电车嵌入式轨道复合地基设计具有参考价值.  相似文献   

13.
电容压力微传感器数值分析   总被引:2,自引:0,他引:2  
用伪谱算法对电容压力微传感器极板膜在均匀载荷条件下的弯曲行为作了数值模拟, 叙述了伪谱算法原理, 并将其用于微传感器的载荷与电容关系分析. 对于非接触式电容压力微传感器, 只有在小载荷(引起的最大垂向位移甚小于极板膜厚度)的条件下, 才可以忽略作用于极板膜的中平面的张力, 此时, 微传感器的电容与载荷之间呈线性关系. 当进一步增加载荷时, 两者的关系呈非线性, 电容随载荷的增大迅速增加. 对于接触式电容压力微传感器, 给出了接触半径的计算公式, 数值计算了载荷与电容关系曲线, 为压力微传感器分析和设计提供了理论依据.  相似文献   

14.
电磁编码超材料利用可调控器件如二极管、微机电(micro-electro-mechanical system, MEMS)开关、液晶材料等可实现对空间电磁波的操控,在智能通信、雷达、无线电能传输等方面具有重要的应用价值.然而,目前主流的PIN (positive-intrinsic-negative)二极管、MEMS开关等调控器件,存在寄生电容大、非线性效应严重、电压控制复杂等缺点,限制了电磁编码超材料的广泛应用.文中首先分析了单悬臂梁MEMS开关启动电压和端口隔离度的矛盾问题.进一步,提出了双悬臂梁MEMS射频开关设计,其由两个悬臂梁串联而成.通过减少悬臂梁与驱动电极的间隙距离,可将启动电压降低至5 V以兼容常用的TTL (transistor-transistor logic)输出电平,降低了电压控制电路的复杂度.由于采用双臂串联的方式,隔离度得以保证,在全频段内达到20 dB以上.所提MEMS开关的机电性能经过COMSOL软件仿真,验证了可行性.随后的电磁仿真结果表明,双悬臂梁MEMS结构在电极间隙为1.5μm时的隔离性能优于间隙为2.5μm的单悬梁臂MEMS开关.最后将所设计的...  相似文献   

15.
微滴喷射是通过产生微米级的液滴实现微量流体精确分配的技术之一,是一种不同于传统减法制造的非接触式、数据驱动的加法式制造技术,代表了现代制造工艺新的发展方向.本文提出了可用于多种材料的气动膜片式按需喷射技术并构建了用于在线观测并分析液滴形成过程的基于延时触发的图像在线采集系统.利用该装置,进行了微液滴喷射的一致性分析,研究了设备结构参数及控制参数与液滴大小及喷射速度的关系,并分析了粘度及表面张力对流体喷射过程的影响.此外,制作了直径约为160.5μm的Sn63Pb37焊球和与基底接触面直径约为346.94μm的光固化胶胶滴阵列图型.实验表明,该气动膜片式按需喷射系统结构简单、可靠性好、耐受高温,可用于包括聚合物、低熔点胶材、高熔点金属的多材料微液滴喷射,在微电子和微系统封装、三维打印、有机半导体器件制作以及生命科学与化学分析等制造领域具有较大的发展潜力.  相似文献   

16.
在微纳米尺度的机电敏感结构表面进行功能分子层修饰,通过与目标靶分子特异性结合,在表面形成Gibbs自由能的变化,由此产生的纳机械表面应力可被结构上集成的机电敏感元件转换成实时电信号输出.首先对固体表面分子层自组装产生纳机械表面应力的机制进行研究,将表面上形成的单分子层(self-assembled monolayer,SAM)按作用原理在纵向(即分子层厚度方向)上分为头基、分子链和尾基三层结构分别进行了基于纳机械敏感实验的原理揭示,在此基础上发明了一种作图法来定量评估和分析自组装分子层对表面能变化的作用.为使分子作用产生纳机械敏感效应在痕量生化分子快速检测识别中得到应用,首次将纵向分子特异性作用和相邻分子间横向作用区分开来,通过不同类型分子间作用的分析和实验验证得到如下结论:横向分子作用是产生表面应力值大小和正负(张应力或压应力)的决定性因素,而分子纵向作用主要是通过对分子层自组装有序性的调节来影响表面应力产生.在对各种横向分子作用机制分析的基础上,提出并用实验验证了分子间氢键作用可产生最高灵敏度的纳机械敏感效应.此后介绍了特异性分子作用产生表面应力的敏感效应在生化痕量快速检测传感器的应用.采用微纳悬臂梁作为敏感效应的转换器,将表面应力转换为悬臂梁弯曲,利用集成在悬臂梁内的压阻器件进行电信号输出.通过在悬臂梁表面金薄膜上修饰巯基双层分子敏感基团,实现了对ppb量级有机磷毒害蒸气的快速检测.为实现敏感分子层长期稳定工作,针对TNT爆炸物分子检测提出并实现了在悬臂梁硅表面直接两次嫁接自组装硅烷基敏感基团,进而解决了传感器对ppt量级TNT检测的长期稳定性问题.通过对传感器电绝缘的有效处理,又实现了对1.5×10-11 mol/m L浓度链霉亲和素的生物溶液在线检测.  相似文献   

17.
当静磁表面波器件的输入换能器的导条包络按照小波函数的包络设计时,静磁表面波器件的输入换能器的脉冲响应函数等于小波函数,从而制作出了静磁表面波式单尺度的小波变换处理器.首先,根据小波的包络函数,定义出了导条长度函数,然后,从该导条长度函数可以计算出输入换能器的各导条长度,最后,根据导条长度及导条宽度设计出输入换能器,从而实现了输入换能器的导条包络按照小波函数的包络设计目的.本文也给出了静磁表面波式单尺的小波变换处理器的插入损耗的补偿方法.当静磁表面波式单尺的小波变换处理器的输出端联接到放大器时,它的插入损耗能被补偿.  相似文献   

18.
本文设计和制备了三组不同内部加强结构分布的Ti-6Al-4V空心点阵试样,开展了单轴压缩加载下空心点阵结构变形和破坏的实验和数值模拟研究,分析了加强结构分布及形状参数对空心点阵结构力学行为的影响规律.结果表明:相比于基本空心点阵结构(试样BS),当加强结构分布在试样节点(试样SN)时,其比弹性模量和比极限强度分别降低了7%和12%,试样在支柱区域发生剪切断裂;而当加强结构分布在支柱内部(试样SW)时,其弹性模量、极限强度和比极限强度则分别提升了20%, 49%和13%,展现出了优越的力学性能.加强结构的不同分布,引起了胞元的结构薄弱区、应力分布和承载能力发生变化,从而导致试样表现出不同的失效特征和力学性能.试样SW的加强结构增强了基本结构的薄弱区域,提高了胞元承载能力,对试样SW加强结构形状参数的数值模拟研究表明:当加强结构高度与半胞元高度的比接近0.6,或者加强结构厚度与试样支柱内径的比接近0.1875时,胞元内部结构更加均衡,其应力分布更加均匀,更有利于获得力学性能优越的轻量化结构.  相似文献   

19.
采用Nd:YAG单纵模调Q激光器,研究了溶胶-凝胶SiO_2薄膜表面颗粒污染对激光辐照损伤的影响.实验表明当膜面存在颗粒时,激光破坏阈值明显降低.尤其是前表面颗粒,最容易诱导损伤,损伤斑中央处基底的烧蚀很严重,且伴有环状变化.从损伤形貌来看,污染后的薄膜更容易出现场致损伤和基底破坏.为了深入研究这一现象,采用了电磁波时域有限差分(FDTD)法对减反射薄膜表面的颗粒污染进行了模拟研究.结果表明,前表面颗粒的调制强度要大得多.颗粒污染诱导的调制最强区位于基底一侧一个波长内,容易诱发损伤.在元件体内,光强呈衰减趋势,在3倍波长深度后逐渐趋于稳定.颗粒物诱导激光损伤问题的量化,可为亚表面缺陷的检测和控制提供依据.  相似文献   

20.
离子选择性纳米多孔膜材料在分子分离、海水淡化、生物分子富集、电池等诸多科学工程领域都有着非常重要的应用.本文通过数值仿真分析嵌有阳离子选择性膜的带电微通道内增强电渗流以及系统的除盐效应.结果表明,当浓度为1 mmol L~(-1)的KCl溶液在40 V cm~(-1)的外电场驱动下流过长60μm、宽10μm的微通道时,如果在通道中心离子选择膜性上加25 mV的跨膜电压,除盐效率约为29%;而当跨膜电压为250 mV时,除盐效率则高达89%.流体运动方面,在低跨膜电压下,通道内流体运动由传统电渗流主导,压力流主要用于平衡通道上游与下游电渗流速度的差别.然而在高跨膜电压下,膜表面附近生成很强的非线性涡流,进而形成泵效应;通道内流体运动则是压力流为主导,通道上下游均呈现带滑移边界的压力流特征.对照等参数的无膜通道,嵌膜系统在跨膜电压为400 mV时可以实现15倍以上的流速.本文所揭示物理机制可为新型微泵以及海水淡化装置的设计及优化提供重要的指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号