首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
目的研究硅酸盐水泥-硫铝酸盐水泥复掺后的凝结时间及力学性能.方法分别测试不同硅酸盐水泥、矿物掺合料掺量下硅酸盐水泥-硫铝酸盐水泥复合体系的凝结时间及胶砂强度,并利用X射线衍射仪和扫描电子显微镜进行矿物组成和结构分析.结果硅酸盐水泥-硫铝酸盐水泥复合体系的凝结时间随硅酸盐水泥掺量的增大先减小再增大,随掺合料掺量的增大先减小再增大.硅酸盐水泥-硫铝酸盐水泥复合体系的强度随着硅酸盐水泥的增加先减小后增大,硅酸盐水泥掺量为10%时,3d抗压强度减小10.67%;随着掺合料的增大而降低,掺合料掺量为40%时,矿粉、粉煤灰3 d抗压强度分别减小44.5%和47.9%.结论两种水泥复掺会缩短凝结时间,降低强度,水化产物减少,结构疏松;粉煤灰和矿粉的掺入会延长凝结时间,减小强度,水化产物减少.  相似文献   

2.
采用掺入30%,50%粉煤灰的水泥胶砂强度试验,研究了CaCl2和CaSO4.2H2O两种激发剂在单掺、复掺时对粉煤灰活性的激发效果。在试验范围内,CaCl2单掺对30%,50%粉煤灰水泥胶砂体系的粉煤灰激发效果显著;CaSO4·2H2O的单掺对30%粉煤灰激发效果随掺量呈非线性关系,早期强度的激发效果相对明显,掺入量为1.5%时,效果最佳。复掺时粉煤灰活性的激发均高于单掺激发,30%掺量粉煤灰复掺编号F2的粉煤灰水泥体系胶砂早期强度提高最为显著,50%掺量粉煤灰复掺编号F4的整体激发效果最佳。  相似文献   

3.
超细矿渣在硫铝酸盐水泥砂浆中的应用   总被引:1,自引:0,他引:1  
在硫铝酸盐水泥砂浆中加入超细矿渣,研究不同掺量的超细矿渣对水泥浆体凝结时间及胶砂流动度、强度的影响.采用电子扫描显微镜(SEM)分析水泥砂浆微观结构以及超细矿渣在砂浆中的影响机理.实验结果表明:随着掺量的提高,水泥浆体的初凝时间延长,终凝时间缩短;胶砂流动度随超细矿渣掺量的增大而减小; 随超细矿渣掺量的增大,水泥胶砂的3d和28d强度提高,当掺量质量分数为20%时,水泥砂浆28d的抗折、抗压强度达到最大,分别达到7.3Mpa和46.93Mpa.  相似文献   

4.
探讨氯化钠对粉煤灰水泥不同阶段性能与水化程度的影响. 结果表明: 掺入适量的氯化钠可以不同程度地提高粉煤灰水泥不同龄期的水化程度与抗压强度而缩短其凝结时间; 当氯化钠掺量一定时, 随着粉磨时间的延长, 粉煤灰水泥不同龄期的水化程度与抗压强度均有不同程度的提高但增幅下降. 随着氯化钠掺量的增加, 粉煤灰水泥不同龄期的水化程度与抗压强度均先增加后下降, 但其凝结时间却先缩短后增加; 当氯化钠掺量为2%, 粉磨时间为15min时各龄期的水化程度与抗压强度均达到最大值, 而粉煤灰水泥的凝结时间最短. 粉煤灰水泥水化3d的水化程度与抗压强度的增幅最大, 而水化28d的相应增幅最小.  相似文献   

5.
探讨氯化钠对粉煤灰水泥不同阶段性能与水化程度的影响.结果表明:掺入适量的氯化钠可以不同程度地提高粉煤灰水泥不同龄期的水化程度与抗压强度而缩短其凝结时间;当氯化钠掺量一定时,随着粉磨时间的延长,粉煤灰水泥不同龄期的水化程度与抗压强度均有不同程度的提高但增幅下降.随着氯化钠掺量的增加,粉煤灰水泥不同龄期的水化程度与抗压强度均先增加后下降,但其凝结时间却先缩短后增加;当氯化钠掺量为2%,粉磨时间为15min时各龄期的水化程度与抗压强度均达到最大值,而粉煤灰水泥的凝结时间最短.粉煤灰水泥水化3d的水化程度与抗压强度的增幅最大,而水化28d的相应增幅最小.  相似文献   

6.
大掺量粉煤灰混凝土由于其中的大部分水泥被粉煤灰取代,使得其早期性能偏低。为此进行了对高效减水剂、石灰石粉以及养护温度等因素对其早期力学性能及凝结时间的影响的研究。研究结果表明,大掺量粉煤灰混凝土凝结时间随粉煤灰掺量的增加而延长,掺量超过50%时,其早期抗压强度下降十分明显;减水剂掺量为1. 2%时,大掺量粉煤灰混凝土早期性能最好;石灰石粉的掺入使得大掺量粉煤灰混凝土在前期的强度降低,但其终凝时间缩短;适当提高养护温度使得大掺量粉煤灰混凝土早期性能得到明显提高,但60℃养护时对后期强度发展不利。  相似文献   

7.
研究了活化粉煤灰对水泥的凝结时间和胶砂强度的影响。实验结果及SEM、DTA、XRD分析表明,活化粉煤灰比原状粉煤灰活性显著提高,可加速水泥早期水化,加快水泥浆体的凝结和硬化,是一种优质水泥混合材及促凝材料。  相似文献   

8.
为充分利用磷渣和粉煤灰两种工业废渣生产高性能胶凝材料,研究了不同磷渣/粉煤灰配合比的碱-磷渣-粉煤灰胶凝材料的性能.结果表明:碱-磷渣-粉煤灰胶凝材料的凝结时间正常,在掺量为0~30%(质量分数)范围内,随着粉煤灰掺量的增加,碱-磷渣-粉煤灰的凝结时间略有延长.与普通硅酸盐水泥相比,碱-磷渣胶凝材料的抗压强度较高而抗折强度相对较低;掺加粉煤灰后碱-磷渣胶凝材料的抗压强度降低,但抗折强度提高.碱-磷渣胶凝材料的抗冻性和耐蚀性均优于普通硅酸盐水泥,但其干缩较大,用部分粉煤灰取代磷渣粉可一定程度减小干缩.  相似文献   

9.
颗粒分布对粉煤灰调粒水泥强度的影响   总被引:2,自引:2,他引:0  
文章按等级配取代的方法将超细粉煤灰和Ⅲ级粉煤灰同时掺加到水泥中,通过分析超细粉煤灰和III级粉煤灰掺加比例变化对混合体系颗粒分布的影响,探讨颗粒分布对粉煤灰调粒水泥性能的影响;测试了粉煤灰掺量和比例不同的调粒水泥的3 d和28 d胶砂强度;试验结果表明:调节III级粉煤灰和超细粉煤灰的掺量和掺加比例对水泥的强度都有很大的影响,增大III级粉煤灰的含量有利于提高水泥的堆积密实度;水泥石的强度并不单纯随着体系堆积密实度的增加而增加,存在着与水泥颗粒的水化活性相匹配的最佳粒径分布.  相似文献   

10.
热膨胀性能是影响水泥基材料温度变形和开裂的重要指标.通过对硬化砂浆不同龄期热膨胀系数的测定,研究了水胶比、胶集比、矿物掺合料种类、粉煤灰掺量和细集料种类对砂浆热膨胀系数的影响规律.结果表明,硬化砂浆的热膨胀系数随水胶比和胶集比的增加而增大,其本质区别是用水量和水泥用量增加导致的水泥石热膨胀系数变化.矿粉能够增加砂浆的热膨胀系数,而粉煤灰则起抑制作用,热膨胀系数随着粉煤灰掺量的增加而降低.在对砂浆热膨胀系数的降低效果方面,大理岩砂玄武岩砂砂岩砂天然砂.  相似文献   

11.
本文对用粉煤灰取代部分水泥的粉煤灰砼的研究现状进行了综述。文中详细论述了粉煤灰作砼掺合料对新拌砼和易性,对硬化砼的强度、变形及抗渗、抗冻、耐腐蚀等耐久性能的影响,并总结了几种激发粉煤灰活性,提高砼强度的方法。  相似文献   

12.
为检验医疗垃圾焚烧飞灰的水泥固化处理效果,对不同飞灰/水泥配比下水泥固化体的凝结时间、抗压强度、重金属浸出毒性等特性方面进行了实验研究.结果表明:掺60%飞灰的水泥固化体终凝时间长达63 h,超出48 h的限值;掺40%飞灰、60%飞灰的水泥固化体7 d的抗压强度仅为0.187 MPa、0.16 MPa,未达到0.2 MPa的要求值;掺40%飞灰、60%飞灰的水泥固化体中Pb的渗沥浓度分别为5.634 mg/L、6.032 mg/L,均超过5 mg/L的限值.根据本实验结果,医疗垃圾焚烧飞灰水泥固化中水泥掺量宜在70%左右,若按照目前国内生活垃圾焚烧飞灰水泥固化工艺的配比(水泥掺量40%以下),各项固化指标均不能达到填埋要求.  相似文献   

13.
基于以废治废有效利用大掺量粉煤灰治理淤泥的思路,使用水泥和生石灰作为粉煤灰的激发剂,同时使用高吸水树脂内供水进行固化土内养护,进行固化土无侧限抗压强度试验和含水率试验.水泥加高吸水树脂、水泥加粉煤灰及水泥加生石灰双掺固化试验发现,各掺量下固化土的强度随龄期的增长而增长,在水泥掺入比一定时各种固化材料存在最佳掺量;以此为基础的四种材料的正交试验得出了固化淤泥的最佳的配比组合并分析固化机制,可以为低掺量水泥处理高含水率疏浚淤泥的实际工程提供参考.含水率试验得出粉煤灰和生石灰能快速降低固化土的含水率,高吸水树脂能够延缓固化土含水率的降低,能够通过内供水的方式保证水化反应环境,继而促使水化反应更大程度地进行.  相似文献   

14.
试验研究了掺CFB灰渣水泥性能随灰渣掺量的变化规律,并探讨了添加激发剂和机械粉磨处理灰渣对水泥性能的影响。结果表明,随CFB灰渣掺量的增加,水泥强度随之降低,而当灰渣在水泥中的掺量不大于30%时,水泥强度可达到42.5水泥级别,当其掺量不大于40%时,水泥强度仍可达到32.5水泥级别。激发剂A能有效提高水泥早期强度,而激发剂B对提高水泥后期强度的贡献较大,同时激发剂A使粉煤灰和炉渣的28 d反应程度分别提高4.1%和3.5%,并促进掺灰渣水泥的水化产物中C-S-H凝胶增多,提高产物结构致密度。机械粉磨处理后能有效提高粉煤灰的活性,水泥强度和粉煤灰反应程度与粉磨时间成正比关系,而粉煤灰需水量比随粉磨时间的延长而先下降后升高。  相似文献   

15.
 利用纳米SiO2、水泥、粉煤灰等主要原材料,加入适量外加剂,制作空心砌块,中间填入废弃聚苯乙烯塑料泡沫,通过自然养护方法研制出一种符合节能要求的自保温墙体材料——掺纳米SiO2粉煤灰夹芯砌块。以普通粉煤灰混凝土空心砌块规格和块型的设计要求和标准作为本研究砌块设计方案的基础,设计出尺寸、孔洞大小及孔洞分布符合要求的砌块。研究了粉煤灰、纳米SiO2、水泥及水等影响砌块强度的主要因素,以砌块抗折强度为主要指标,取4因素、3水平进行正交试验,优化砌块配合比参数,最终得出最佳配比为粉煤灰40%,水泥14%,纳米SiO2 0.5%,水掺量为22%,该砌块具有较高的抗折强度及较低的成本。该配合比的因素水平组合与前期研究中取得较高抗压强度的因素水平一致,并且其抗折强度与抗压强度比值较高;该配合比砌块不仅抗压强度高,而且抗折强度大,应用该砌块砌筑的砌体具有较高承受复杂应力的能力。  相似文献   

16.
为了研究粉煤灰基地聚物胶凝材料的组成对其性能的影响,对C类粉煤灰分别掺入少量(质量分数小于17%)偏高岭土和矿渣粉后,进行了两种地聚物胶砂试块的力学性能试验研究,并与相同配比、相同制作养护条件下的普通硅酸盐水泥胶砂试块进行了比较.试验结果表明:纯粉煤灰(C类)地聚物胶凝材料强度低于P.O 42.5水泥;当外掺料质量分数大于17%时,粉煤灰基地聚物胶凝材料强度超过同龄期(14 d)的水泥;掺入矿渣粉的粉煤灰基地聚物抗压强度高于掺入等量偏高岭土的粉煤灰基地聚物.  相似文献   

17.
等厚度水泥土搅拌连续墙作为止水帷幕,具有适应地层广、成墙品质好等独特的优点;但在推广过程中的最大障碍是造价过高;若粉煤灰和矿渣等工业废渣替代部分水泥,则其应用范围将大大提高。为测试工业废渣代替水泥的性能,笔者做了大量无侧限抗压强度和渗透性试验。试验结果表明:性能差别不大的情况下,粉煤灰和矿渣可以部分替代水泥;复合水泥土存在最优配合比,对于黏土,最佳掺入比为30%,最佳水固比为0.6;对于砂土,最佳掺入比则为40%,最佳水固比为0.6;总体而言,粉煤灰配合砂土的物理力学性质较优,矿渣则更适合黏土。添加粉煤灰或矿渣的黏土长期强度接近;而添加粉煤灰的砂土强度平均值比添加矿渣大2.4倍,同时更加稳定。添加粉煤灰的黏土和砂土平均渗透系数是添加矿渣的35%左右。  相似文献   

18.
为了研究掺合料对大掺量粉煤灰水泥强度的影响,确定合理的原材料配合比.分析了试验所用原材料的化学成分,通过24组试件试验, 采用试验的方法研究分析了不同龄期、不同掺合料及不同掺量情况下, 大掺量粉煤灰水泥强度的变化趋势.得出单掺粉煤灰的强度小于粉煤灰加矿渣的双掺强度小于单掺矿渣的强度.J2型激发剂可以提高早期和后期强度,K3型激发剂会导致早期强度下降.确定了合理的原材料配合比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号