首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
利用介质阻挡放电等离子体控制压气机叶栅端壁二次流   总被引:3,自引:0,他引:3  
在压气机叶栅端壁20%,40%和60%弦长处布置了3组等离子体激励器.利用微型五孔压力探针测量了施加等离子体激励前后压气机叶栅尾迹的流场.测量结果表明3组激励器同时工作时对总压损失和流动阻塞改善的效果最好.各组等离子体激励器独立工作时,20%弦长处的等离子体激励能够最有效的改善流动阻塞;60%弦长处的激励对总压损失的改善比较好;而40%弦长处的激励则会恶化总压损失.总之在叶栅端壁施加等离子体激励对端壁二次流有较明显影响,激励位置是影响作用效果的关键因素.  相似文献   

2.
基于内乘波概念的三维变截面高超声速进气道   总被引:8,自引:0,他引:8  
提出并命名了高超声速三维变截面内乘波式进气道,其进、出口截面形状同时可控,且能够全流量捕获来流;分析了高超声速进气道的流线追踪设计方法与外流乘波体设计方法间存在的联系;根据内收缩基本流场的特点,从理论上证明吻切锥理论不适用于内乘波式进气道设计,而吻切轴对称理论则可以运用于变截面内乘波式进气道设计.在此基础上,提出了变截面内乘波式进气道的两类具体设计方法.采用这两类方法,获得了三角形进口到椭圆出口和方形进口到椭圆出口的变截面内乘波式进气道方案.计算结果证实,变截面内乘波式进气道设计理论可以在实现截面形状三维复杂过渡的同时,保证进气道内部激波形状和主要流动特征仍与设计基本流场一致,进气道初始激波贴口,实现内乘波,全流量捕获来流.该设计理论为复杂外形的三维高超声速进气道设计提供了思路,但此类进气道在设计和非设计状态下的具体流动特征及工作特性都还有待进一步研究.  相似文献   

3.
为了提高固冲发动机"变工况"工作条件下进气道性能,将外部波系封口马赫数降低的设计方法与燃气射流进气道控制技术相结合,提出了燃气射流控制进气道设计方案;为分析设计方案的可行性,设计了三种进气道,并采用数值模拟方法三种进气道流场进行了模拟;通过对模拟结果的分析探索了调节方案的调节原理;通过对三种方案进气道性能的比较,初步验证了调节方案.研究表明:采用降低外部波系封口马赫数的设计方法可提高进气道低马赫数工作时的流量系数;燃气射流控制技术可均化进气道在高马赫数工作时的入口流场,减小有效喉道面积,提高总压恢复;射流控制可调进气道在一定工作范围内具有较好的性能.  相似文献   

4.
合成射流控制圆柱分离及绕流结构的实验研究   总被引:3,自引:0,他引:3  
在水槽中对合成射流控制圆柱分离及其绕流结构进行了实验研究. 射流出口为狭缝, 由圆柱前驻点向上游喷射. 实验表明: 与传统的将射流出口置于分离点附近或分离区内一样, 采用的合成射流布置方式对圆柱绕流分离同样具有很好的控制效果, 但控制机理不同. 在本实验采用的合成射流作用下, 圆柱绕流的前驻点前移, 在狭缝出口两侧形成一对旋涡. 当基于合成射流出口平均速度的雷诺数ReU约小于43时, 绕流在圆柱迎风面前形成闭合包线, 起到前缘修形的作用; 而在ReU较大时则在圆柱迎风面前形成开式包线, 并使绕过圆柱的流体具有很强的湍流动能. 因此, 不论ReU的大小如何, 合成射流都能改善圆柱绕流的分离状况. 对于圆柱背风面流动, 随着ReU的增大, 后缘分离区逐渐减小, 在圆柱上游形成开式包线, 且大约当ReU大于344时, 圆柱绕流可完全再附. 此时, 绕过圆柱的流体在后驻点附近汇合, 形成强剪切层, 诱导产生周期性向下游脱落的旋涡.  相似文献   

5.
介质阻挡放电等离子体流动控制的研究   总被引:2,自引:0,他引:2  
在等离子体激励因素诱导流场变化实验和数值模拟分析的基础上,探索了介质阻挡放电等离子体流动控制的效应.结果表明湍流模型比层流模型可获得更好的结果.通过平板流动实验与压气机叶栅实验相结合的措施,研究了等离子体对外流、内流加速与抑制流动分离的耦合作用.实验结果表明:等离子体激励可以改变边界层的速度特性;在流速低于20m/s时,等离子体激励可显著改善栅后总压和速度分布特征;流速接近50m/s时,等离子体仍会明显改变总压和速度的最小值;可见,在低速流动条件下,采用等离子体激励方式能达到抑制流动分离的目的.  相似文献   

6.
采用正交曲线坐标下建立的紊流控制方程, 对弯道水流中由离心力和紊动应力联合驱动的二次流结构建立了数学模型. 将螺旋下降的明渠流动条件下的数值模拟结果与如下试验资料进行了对比: (ⅰ) 交错边滩式矩形断面弯道明渠流动, (ⅱ)复式断面顺直明渠流动. 计算中采用了3种不同的Reynolds应力计算方法, 包括Launder和Ying(LY)及Naot和Rodi(NR)的代数应力模型及运用非线性k-ε模型计算紊动黏性系数的SY模型, 在各种弯道曲率和边界条件下, 对不同紊流模型的二次流结构数值模拟结果精度进行了评估. 研究表明, LY和SY模型数值模拟计算得到的二次流结构和紊动应力分布与试验数据均能达到趋势上的符合, 能够模拟出紊动应力和弯道流动中的离心力对二次流结构形成的影响.  相似文献   

7.
微型涡流发生器控制SCCH增升构型流动分离研究   总被引:1,自引:0,他引:1  
针对等弦长带后掠半模SCCH增升构型襟翼附面层发生流动分离,线性段增升效率降低的问题,采用数值模拟和风洞试验方法,开展微型涡流发生器控制襟翼附面层流动分离研究.首先,采用数值方法分析SCCH增升构型的基本流动现象,获得襟翼流动分离特性,作为微型涡流发生器设计依据;其次,根据涡流发生器工作原理,结合SCCH增升构型襟翼结构与流动分离特性,提出本文微型涡流发生器设计思想和初步设计方案;再次,采用数值方法研究微型涡流发生器控制增升装置流动分离的作用机理,研究微型涡流发生器布置方式、弦向位置、安装角、高度、展向间距等几何参数对流动控制效能的影响规律,提出控制襟翼流动分离的微型涡流发生器设计方案,供风洞试验验证;完成数值设计之后,采用风洞试验方法,进行微型涡流发生器设计方案验证与可能的方案筛选,以验证数值模拟方法、设计方法及涡流发生器设计方案;最后,分析数值模拟和风洞试验研究结果,提出具有工程应用价值的增升装置微型涡流发生器设计原则、设计方法及技术路线,供型号研制借鉴与采纳.研究结果表明,本文针对SCCH着陆构型提出的微型涡流发生器设计方案,经CFD和风洞试验验证,在着陆及下滑进场飞行状态,最大增升与增阻量分别达到10%和14%,符合着陆飞行状态对增升装置的设计要求,且CFD方法提出的设计方案最佳,具有惟一性;同时也表明,本文提出的增升装置微型涡流发生器设计原则、设计方法及技术路线可用于型号研制.  相似文献   

8.
通过水槽氢气泡流动显示和PIV实验研究了圆柱尾迹与平板前缘发生直接撞击后平板边界层旁路转捩特性,包括边界层旁路转捩前期拟序结构演化及其对流场统计特性影响.结果表明,尾迹撞击平板后能在平板上表面近壁区生成尺度较小展向涡;这些展向涡或者是尾迹涡被平板前缘切割后在近壁区残留部分,或者是由过前缘尾迹涡所诱生成.近壁区展向涡生成使边界层内流向速度脉动最大值在早期即出现快速增长.另一方面,尾迹对平板撞击作用主要体现在圆柱尾迹中发辫涡结构在流经平板前缘时被撕裂,受RDT机制作用在流向上被迅速拉伸形成近壁区流向涡.其后取代展向涡与条带一起成为近壁区主要流动结构,使流向速度脉动最大值出现二次增长.实验中转捩前期近壁区流体同时感受二维动和三维动,使转捩进程相比于尾迹与边界层不发生直接撞击时更加快速.  相似文献   

9.
针对具有微米级颗粒的粗糙圆柱水平入水开展试验研究,通过以高速摄影为工具的流动显示技术研究了粗糙圆柱以不同初速度入水后,水与圆柱表面的界面流动发生的几何形态、运动的变化,对流动分离位置进行了较准确的测量.研究表明,粗糙表面会导致圆柱入水时气-固-液三相接触线出现锯齿形失稳,接触线速度明显降低,液面更容易与圆柱表面分离.其次,对液面分离的影响因素开展研究,发现随着表面颗粒尺寸减小和单位面积的颗粒数目增加,分离角呈现先增大后减小再增加的变化规律;随着入水速度的增加,分离角度减小,界面流动更容易发生分离.最后,通过对不同粗糙表面静态及动态接触角的测量,对粗糙表面动态接触角滞后特性与入水界面流动分离的相关性问题开展了研究.  相似文献   

10.
空间流动影响因子——室内空气污染控制新概念及其应用   总被引:1,自引:0,他引:1  
提出了空间流动影响因子概念. 藉此概念, 提出了室内优化有机挥发物(VOC)源和人员活动区域布置的方法, 具体为: (ⅰ) 在室内流动情况确定后, 对给定的污染源, 利用空间流动影响因子可方便确定使房间或特定区域污染物浓度最小的污染源的最优布置方式; (ⅱ) 在给定污染源位置的情况下, 利用空间流动影响因子可方便确定使室内特定区域污染物浓度最小的气流组织形式(空调送风形式); (ⅲ) 空间流动影响因子本身, 提供了流场污染危险性或免疫性的评价指标. 通过算例, 介绍了此方法在室内空气污染控制中的应用.  相似文献   

11.
几种超声速横向射流方案混合特性的数值研究   总被引:4,自引:0,他引:4  
本文首先发展了AUSMDV格式结合k-ωSST湍流模型的数值模拟方法,利用三维圆孔垂直喷氢实验算例验证了数值方法的可靠性.在确定质量加权平均总压和混合效率作为喷射方案性能评价标准的基础上,基于所发展的数值方法研究了不同喷射方案的混合特性.研究发现:超声速横向射流的近场混合主要由对流输运控制,而远场混合主要由质量扩散控制;圆孔喷射与狭缝喷射造成的总压损失相当,但圆孔喷射的三维绕流特性可使其导致更高的混合效率;圆孔喷射时,喷射角的变化主要影响射流近场的混合程度,喷射角120°为最优的喷射角喷孔间距与喷孔直径的比值增大时,可导致更高的混合效率,但也可相应带来总压损失的大幅增加;采用缩小喷孔面积而保证燃料质量流量不变的方法设计二级喷射方案时,其所引起的总压损失相比于单级喷射的增幅较小,而导致的混合效率增幅较大,因此二级喷射的混合性能优于单级喷射.本文的研究成果可为超燃冲压发动机燃烧室内燃料的喷射方案设计提供依据.  相似文献   

12.
严重分离流动非定常效应是造成现代飞行器发生抖振的主要因素,因此,准确模拟飞行器分离流动是开展飞行器抖振研究的基础.本文在综合考虑现代计算机资源以及分离流流动模型可信度的基础上,建立了基于MDDES(Modified Delayed Detached Eddy Simulation)的分离流非定常数值模拟方法,通过对典型的战斗机大攻角分离流模拟计算,对计算方法进行了验证.在此基础上,综合利用RBF径向基函数技术与无限插值方法建立高效的、鲁棒性强的动网格技术,结合模态空间下结构动力学方程,建立了飞机气动/结构耦合抖振数值模拟平台,对某战斗机大攻角下边条涡干扰引起的垂尾抖振问题开展研究.数值结果显示:通过对流场中涡破裂位置的压力脉动的时域响应进行的频谱分析表明,不同尺度的涡结构脉动频率覆盖了垂尾的结构固有模态频率,相比较雷诺平均Navier-Stokes方程,MDDES方法能够分辨出更细致的、更高频率的小尺度涡结构;与颤振明显的区别,各阶模态位移加速度响应由自身模态所主导,一阶弯曲与一阶扭转模态存在强烈的耦合,使结构产生加速度,承受较大的惯性力载荷冲击,是引起结构疲劳的主要因素,验证了所采用数值手段和相应方法的有效性.  相似文献   

13.
二氧化碳埋存对地层岩石影响的室内研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用XRD,SEM,三轴岩石实验系统及岩心驱替实验装置研究了二氧化碳溶蚀对储层岩石矿物组分、孔隙结构及力学性能的影响.结果表明,在一定条件下,二氧化碳对岩石的溶蚀主要受岩石的结构和构造、流体组成及外部动力条件的影响,即具有层理构造的岩心,其层理面是优先溶蚀区域,应力变化时这些部位微裂纹的产生及扩展的几率最大,主应力也有一定的控制作用;在稳定水体环境控制的块状构造的岩心中,CO2的溶蚀导致岩心孔隙变大,并产生次生孔隙;裂缝的形成受溶蚀、流动方向及应力的共同控制.在二氧化碳水溶液注入过程中,出口端气体流速有一个突然大幅度增加的过程,表明流动过程中发生的溶蚀作用产生了2种变化:(1)岩石微裂缝的产生及闭合;(2)岩石颗粒的运移.静态溶蚀实验表明,随着溶蚀时间的增加,岩石的抗拉强度及抗压强度均下降,证实了胶结强度的明显下降.渗透率的增加及微裂纹(或裂缝)的产生造成封存的效果变差,从而影响了封存的效果.  相似文献   

14.
通过数值求解Reynolds平均的Navier-Stokes方程组,对重要的流动控制手段之涡流发生器(vortex generator,简称VG)的绕流流场及其对主流的影响规律进行计算模拟.首先,预测平板上单一涡流发生器流动,验证数值计算方法,并认识含涡流发生器流场的基本流场特征;其次,预测标准模型——ONERA-M6机翼跨声速流动,探索激波/边界层干扰流动特征;再次,在超临界机翼25%当地弦长附近布置一排涡流发生器,探索它们对机翼跨声速流动边界层的干扰效应;最后,将这些涡流发生器位置提前(距前缘3.5%当地弦长),检验其对低速大攻角流动的影响规律.结果表明,7个VG能有效抑制跨声速强激波/边界层干扰导致的分离,减小展向流动;也能大幅缩减低速大攻角状态下的分离范围.  相似文献   

15.
层流预混V形火焰中的湍流   总被引:2,自引:0,他引:2  
研究火焰中的情况, 发现即使层流预混V形火焰中也存在着强烈的速度脉动. 这种速度脉动与预混可燃气的当量比(化学反应因素)密切相关, 而受来流速度的影响较小. 火焰中心区速度的概率分布函数呈“平顶型”. 分析认为火焰与流动的相互作用不仅在流场大尺度空间内影响火焰特性, 而且在火焰中小尺度空间内也存在着火焰(化学反应)与流动的相互作用, 其结果之一就是在火焰中产生小尺度湍流, 这种小尺度湍流将在火焰中小尺度空间内影响火焰特性.  相似文献   

16.
变弯度技术可以提升大升力系数下机翼的抖振特性,对于提高民航客机的综合性能具有重要意义.构造了光滑、连续、可微的定量描述激波-附面层干扰导致的分离强度演变规律的分离函数,实现了适用于大规模精细化气动外形优化的抖振始发特性评估方法.基于典型的民用客机标模,开展了考虑抖振性能约束的机翼后缘变弯度减阻优化设计研究.结果表明采用后缘变弯度技术,在1.3g抖振点减弱激波以及激波附面层干扰导致的流动分离强度,可以获得1.89%的减阻量.以设计点阻力最小进行优化,设计点机翼后缘能够以更大的逆压梯度进行压力恢复;同时在1.3g抖振状态减小逆压梯度,降低分离强度,从而减弱了抖振性能约束对设计点产生的影响.在俯仰力矩配平条件下,获得接近1%的减阻收益.因此结合分离函数预测抖振特性的气动优化设计方法可以对变弯度机翼进行深入的优化设计,让机翼的变弯度收益具备更为实际的参考价值.  相似文献   

17.
为进一步揭示扩压叶栅中旋涡的结构型式,以理解旋涡对损失的作用机理,主要使用拓扑分析和数值计算的方法,讨论叶片通道中马蹄涡、通道涡、角涡等二次流旋涡的生成、演绎与发展.提出了低能流体区与外部流动区分界面的概念,分析表明通道涡、马蹄涡和角涡都位于分界面内部(低能流体区),而集中脱落涡位于分界面外部(外部流动区).在损失分析方面,采用了流动耗散函数而非熵增来表征损失的大小.结果表明,涡运动与损失的产生存在直接联系,即旋涡的中心附近都是局部损失核心;流道中损失最严重的区域是位于分界面附近而不是位于低能区里.  相似文献   

18.
采用先进的晶体相场模型,分别模拟了不同高温条件下的小角对称倾侧晶界,在施加应变下的晶界分解和亚晶界湮没的过程.研究表明:对于不靠近固-液共存温度的高温(T1)预熔化样品,施加应变下的晶界位错发生滑移运动,生成亚晶界和新的晶粒.随后,具有相反Burgers矢量的位错亚晶界相向运动,新晶粒不断吞噬旧晶粒而长大,最后发生亚晶界相遇湮没,亚晶界和预熔化区域消失,双晶转变为完整单晶.对于靠近固-液共存温度的高温(T2)预熔化样品,在应变作用下,生成的亚晶界相向运动,当接近到一定距离时,形成位错对偶极子,发生亚晶界位错结构二次转换,之后亚晶界运动反向,往回迁移运动,最后与另一列返回的亚晶界相向靠近,相互作用转变成"之"字形的亚晶界,然后湮没消失,整个体系转变为单晶.对于高温T2预熔化亚晶界,在应变作用下,形成位错对偶极子的过程中,偶极子的2个位错对的预熔化区域开始扩张、连通,形成近似棒状区域.这一过程的实质是高温预熔化区内部的原子晶格变软,使得在应变作用下,原子排列可以较容易的发生滑移和扭转变形,发生了不同类型的位错相互作用,出现了位错萌生、形核和增殖,位错分解和湮没等一系列位错反应,由此引起了位错的Burgers矢量方向的改变和亚晶界位错类型交换.  相似文献   

19.
针对现代飞机布局中融合体型机身的大攻角复杂绕流,通过测压及PIV风洞实验对头部扰动对融合体机身流动的影响及融合体机身背涡结构进行了研究.在模型头部设置人工扰动的实验表明融合体机身气动特性不会受到头部扰动的影响,常规旋成体机身的不确定性问题在融合体机身中并不存在;其次,大攻角下融合体机身背涡沿轴向从前往后可依次分为锥形流线性发展区、背涡强度衰减区、背涡非对称破裂区及完全破裂区,文中给出了这种背涡结构与相应截面气动力沿轴向变化之间的关系;再次,本文给出了融合体机身背涡涡心轨迹及背涡结构沿轴向分区特性随攻角的演化规律;最后,本文在Re=1.26×105~5.04×105范围内对融合体机身Re数效应的研究进一步证实了前人的结论:融合体型机身绕流对Re数影响的不敏感性,Re数仅对绕流中的二次分离和相应的吸力峰值产生较小的影响.  相似文献   

20.
介绍了天空河流的发现、概念及未来研究.对气象再分析数据的分析发现,大气水汽通量场中不仅存在通量强度相对周围区域更大的局部性条带结构,而且整个水汽通量场中都存在着通量相对较高的水汽输送网络结构,形成了全球及区域水汽输送的主干通道.由于这些通量强度很高的条带构成的网络结构是水汽汇聚、输送最为集中、强度最大的网络,与地表河流具有类似的分级属性,我们可将这种水汽输送的网络结构上称为"天空河流(River in the Sky)",或简称"天河(Sky River)".天河是对水汽集中输送带概念的升华和深化,新的概念的提出有利于我们认识大气中的水汽输运规律,对研究地球水循环长期演化规律的统计特征及其与地表水文、泥沙等流域过程的相互作用机制具有重要的价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号