首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular machinery mediating vesicle budding,docking and fusion   总被引:5,自引:0,他引:5  
A general machinery buds and fuses transport vesicles which connect intracellular compartments with each other and allow communication with the extracellular environment. Cytoplasmic coat proteins deform membranes to bud vesicles and interact directly or indirectly with cargo molecules. Compartment-specific SNAREs (SNAP receptors) on vesicles and target membranes dock vesicles and provide a scaffolding for the general fusion machinery to initiate lipid bilayer fusion.  相似文献   

2.
Vesicle fusion is a ubiquitous biological process involved in membrane trafficking and a variety of specialised events such as exocytosis and neurite outgrowth. The energy to drive biological membrane fusion is provided by fusion proteins called SNAREs. Indeed, SNARE proteins play critical roles in neuronal development as well as neurotransmitter and hormone release. SNARE proteins form a very tight alpha-helical bundle that can pull two membranes together, thereby initiating fusion. Whereas a great deal of attention has been paid to partner proteins that can affect SNARE function, recent genetic and biochemical evidence suggests that local lipid environment may be as important in SNARE regulation. Direct lipid modification of SNARE fusion proteins and their regulation by fatty acids following phospholipase action will be discussed here in detail. Our analysis highlights the fact that lipids are not a passive platform in vesicle fusion but intimately regulate SNARE function. Received 20 December 2006; received after revision 6 February 2007; accepted 15 March 2007  相似文献   

3.
V-ATPases are multimeric enzymes made of two sectors, a V1 catalytic domain and a V0 membrane domain. They accumulate protons in various intracellular organelles. Acidification of synaptic vesicles by V-ATPase energizes the accumulation of neurotransmitters in these storage organelles and is therefore required for efficient synaptic transmission. In addition to this well-accepted role, functional studies have unraveled additional hidden roles of V0 in neurotransmitter exocytosis that are independent of the transport of protons. V0 interacts with SNAREs and calmodulin, and perturbing these interactions affects neurotransmitter release. Here, we discuss these data in relation with previous results obtained in reconstituted membranes and on yeast vacuole fusion. We propose that V0 could be a sensor of intra-vesicular pH that controls the exocytotic machinery, probably regulating SNARE complex assembly during the synaptic vesicle priming step, and that, during the membrane fusion step, V0 might favor lipid mixing and fusion pore stability.  相似文献   

4.
The termination of heptahelical receptor signaling is a multilevel process coordinated, in large part, by members of the arrestin family of proteins. Arrestin binding to agonist-occupied receptors promotes desensitization by interrupting receptor-G protein coupling, while simultaneously recruiting machinery for receptor endocytosis, vesicular trafficking, and receptor fate determination. By simultaneously binding other proteins, arrestins also act as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein ‘signalsome’ complexes. Arrestin-binding thus ‘switches’ receptors from a transient G protein-coupled state to a persistent arrestin-coupled state that continues to signal as the receptor transits intracellular compartments. While it is clear that signalsome assembly has profound effects on the duration and spatial characteristics of heptahelical receptor signals, the physiologic functions of this novel signaling mechanism are poorly understood. Growing evidence suggests that signalsomes regulate such diverse processes as endocytosis and exocytosis, cell migration, survival, and contractility.  相似文献   

5.
Biological membrane fusion is driven by different types of molecular fusion machines. Most of these proteins are membrane-anchored by single transmembrane domains. SNARE proteins are essential for intracellular membrane fusion along the secretory and endocytic pathway, while various viral fusogens mediate infection of eukaryotic cells by enveloped viruses. Although both types of fusion proteins are evolutionarily quite distant from each other, they do share a number of structural and functional features. Their transmembrane domains are now known to be critical for the fusion reaction. We discuss at which stages they might contribute to bilayer mixing. Received 5 October 2006; received after revision 14 November 2006; accepted 8 January 2007  相似文献   

6.
ER-to-Golgi transport and cytoskeletal interactions in animal cells   总被引:7,自引:0,他引:7  
The endoplasmic reticulum (ER)-Golgi system has been studied using biochemical, genetic, electron and light microscopic techniques. We now understand many aspects of trafficking from the ER to the Golgi apparatus, including some of the signals and mechanisms for selective retention and retrieval of ER resident proteins and export of cargo proteins. Proteins that leave the ER emerge in export complexes or ER exit sites and accumulate in pleiomorphic transport carriers referred to sometimes as VTCs or intermediate compartments. These structures then transit from the ER to the Golgi apparatus along microtubules using the dynein/dynactin motor and fuse with the cis cisterna of the Golgi apparatus. Many proteins (including vSNAREs, ERGIC53/p58 and the KDEL receptor) must cycle back to the ER from pre-Golgi intermediates or the Golgi. We will discuss both the currently favored model that this cycling occurs via 50-nm COPI-coated vesicles and in vivo evidence that suggests retrograde trafficking may occur via tubular structures.  相似文献   

7.
The trans-Golgi network (TGN) is a major secretory pathway sorting station that directs newly synthesized proteins to different subcellular destinations. The TGN also receives extracellular materials and recycled molecules from endocytic compartments. In this review, we summarize recent progress on understanding TGN structure and the dynamics of trafficking to and from this compartment. Protein sorting into different transport vesicles requires specific interactions between sorting motifs on the cargo molecules and vesicle coat components that recognize these motifs. Current understanding of the various targeting signals and vesicle coat components that are involved in TGN sorting are discussed, as well as the molecules that participate in retrieval to this compartment in both yeast and mammalian cells. Besides proteins, lipids and lipid-modifying enzymes also participate actively in the formation of secretory vesicles. The possible mechanisms of action of these lipid hydrolases and lipid kinases are discussed. Finally, we summarize the fundamentally different apical and basolateral cell surface delivery mechanisms and the current facts and hypotheses on protein sorting from the TGN into the regulated secretory pathway in neuroendocrine cells. Received 2 November 2000; received after revision 19 February 2001; accepted 19 February 2001  相似文献   

8.
Bacterial protein toxins and cell vesicle trafficking   总被引:2,自引:0,他引:2  
A group of bacterial protein toxins interfere with vesicular trafficking inside cells. Clostridial neurotoxins affect mainly the highly regulated fusion of neurotransmitter- and hormone-containing vesicles with the plasma membrane. They cleave the three SNARE proteins: VAMP, SNAP-25 and syntaxin, and this selective proteolysis results in a blockade of exocytosis. TheHelicobacter pylori cytotoxin is implicated in the pathogenesis of gastroduodenal ulcers. It causes a progressive and extensive vacuolation of cells followed by necrosis, after a cytotoxin-induced alteration of membrane trafficking by late endosomes. Vacuoles originate from this compartment in a rab7-dependent process and swell because they are acidic and accumulate membrane-permeant amines.  相似文献   

9.
SNARE (SNAP receptor) proteins drive intracellular membrane fusion and contribute specificity to membrane trafficking. The formation of SNAREpins between membranes is spatially and temporally controlled by a network of sequentially acting accessory components. These regulators add an additional layer of specificity, arrest SNAREpin intermediates, lower the energy required for fusion, and couple membrane fusion to triggering signals. The functional activity of some of these regulators determines the plasticity of regulated exocytosis. (Part of a Multi-author Review)  相似文献   

10.
Autophagic degradation of cytoplasm (including protein, RNA etc.) is a non-selective bulk process, as indicated by ultrastructural evidence and by the similarity in autophagic sequestration rates of various cytosolic enzymes with different half-lives. The initial autophagic sequestration step, performed by a poorly-characterized organelle called a phagophore, is subject tofeedback inhibition by purines and amino acids, the effect of the latter being potentiated by insulin and antagonized by glucagon. Epinephrine and other adrenergic agonists inhibit autophagic sequestration through a prazosin-sensitive 1-adrenergic mechanism. The sequestration is also inhibited by cAMP and by protein phosphorylation as indicated by the effects of cyclic nucleotide analogues, phosphodiesterase inhibitors and okadaic acid.Asparagine specifically inhibits autophagic-lysosomal fusion without having any significant effects on autophagic sequestration, on intralysosomal degradation or on the endocytic pathway. Autophaged material that accumulates in prelysosomal vacuoles in the presence of asparagine is accessible to endocytosed enzymes, revealing the existence of an amphifunctional organelle, the amphisome. Evidence from several cell types suggests that endocytosis may be coupled to autophagy to a variable extent, and that the amphisome may play a central role as a collecting station for material destined for lysosomal degradation.Protein degradation can also take place in a salvage compartment closely associated with the endoplasmic reticulum (ER). In this compartment unassembled protein chains are degraded by uncharacterized proteinases, while resident proteins roturn to the ER and assembled secretory and membrane proteins proceed through the Golgi apparatus. In thetrans-Golgi network some proteins are proteolytically processed by Ca2+-dependent proteinases; furthermore, this compartment sorts proteins to lysosomes, various membrane domains, endosomes or secretory vesicles/granules. Processing of both endogenous and exogenous proteins can occurr in endosomes, which may play a particularly important role in antigen processing and presentation. Proteins in endosomes or secretory compartments can either be exocytosed, or channeled to lysosomes for degradation. The switch mechanisms which decide between these options are subject to bioregulation by external agents (hormones and growth factors), and may play an important role in the control of protein uptake and secretion.  相似文献   

11.
The chloroplast is the hallmark organelle of plants. It performs photosynthesis and is therefore required for photoautotrophic plant growth. The chloroplast is the most prominent member of a family of related organelles termed plastids which are ubiquitous in plant cells. Biogenesis of the chloroplast from undifferentiated proplastids is induced by light. The generally accepted endosymbiont hypothesis states that chloroplasts have arisen from an internalized cyanobacterial ancestor. Although chloroplasts have maintained remnants of the ancestral genome (plastome), the vast majority of the genes encoding chloroplast proteins have been transferred to the nucleus. This poses two major challenges to the plant cell during chloroplast biogenesis: First, light and developmental signals must be interpreted to coordinately express genetic information contained in two distinct compartments. This is to ensure supply and stoichiometry of abundant chloroplast components. Second, developing chloroplasts must efficiently import nuclear encoded and cytosolically synthesized proteins. A subset of proteins, including such encoded by the plastome, must further be sorted to the thylakoid compartments for assembly into the photosynthetic apparatus. Received 1 September 2000; received after revision 27 October 2000; accepted 1 November 2000  相似文献   

12.
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.  相似文献   

13.
Human skin is permanently exposed to microorganisms, but rarely infected. One reason for this natural resistance might be the existence of a ‘chemical barrier’ consisting in constitutively and inducibly produced antimicrobial peptides and proteins (AMPs). Many of these AMPs can be induced in vitro by proinflammatory cytokines or bacteria. Apart from being expressed in vivo in inflammatory lesions, some AMPs are also focally expressed in skin in the absence of inflammation. This suggests that non-inflammatory stimuli of endogenous and/or exogenous origin can also stimulate AMP synthesis without inflammation. Such mediators might be ideal ‘immune stimulants’ to induce only the innate antimicrobial skin effector molecules without causing inflammation. Received 9 August 2005; received after revision 21 October 2005; accepted 16 November 2005  相似文献   

14.
Reggies (flotillins) are detergent-resistant microdomains involved in the scaffolding of large heteromeric complexes that signal across the plasma membrane. Based on the presence of an evolutionarily widespread motif, reggies/flotillins have been included within the SPFH (stomatin-prohibitin-flotillin-HflC/K) protein superfamily. To better understand the origin and evolution of reggie/flotillin structure and function, we searched databases for reggie/flotillin and SPFH-like proteins in organisms at the base and beyond the animal kingdom, and used the resulting dataset to compare their structural and functional domains. Our analysis shows that the SPFH grouping has little phylogenetic support, probably due to convergent evolution of its members. We also find that reggie/flotillin homologues are highly conserved among metazoans but are absent in plants, fungi and bacteria, where only proteins with ‘reggie-like’ domains can be found. However, despite their low sequence similarities, reggie/flotillin and ‘reggie-like’ domains appear to subserve related functions, suggesting that their basic biological role was acquired independently during evolution. Received 21 September 2005; received after revision 14 November 2005; accepted 21 November 2005  相似文献   

15.
Secretion is a fundamental biological activity of all eukaryotic cells by which they release certain substances in the extracellular space. It is considered a specialized mode of membrane trafficking that is achieved by docking and fusion of secretory vesicles to the plasma membrane (i.e., exocytosis). Secretory vesicle traffic is thought to be regulated by a family of Rab small GTPases, which are regulators of membrane traffic that are common to all eukaryotic cells. Classically, mammalian Rab3 subfamily members were thought to be critical regulators of secretory vesicle exocytosis in neurons and endocrine cells, but recent genetic and proteomic studies indicate that Rab3 is not the sole Rab isoform that regulates secretory vesicle traffic. Rather, additional Rab isoforms, especially Rab27 subfamily members, are required for this process. In this article I review the current literature on the function of Rab isoforms and their effectors in regulated secretory vesicle traffic.  相似文献   

16.
Proteins of the developing enamel matrix include amelogenin, ameloblastin and enamelin. Of these three proteins amelogenin predominates. Protein-protein interactions are likely to occur at the ameloblast Tomes’ processes between membrane-bound proteins and secreted enamel matrix proteins. Such protein-protein interactions could be associated with cell signaling or endocytosis. CD63 and Lamp1 are ubiquitously expressed, are lysosomal integral membrane proteins, and localize to the plasma membrane. CD63 and Lamp1 interact with amelogenin in vitro. In this study our objective was to study the molecular events of intercellular trafficking of an exogenous source of amelogenin, and related this movement to the spatiotemporal expression of CD63 and Lamp1 using various cell lineages. Exogenously added amelogenin moves rapidly into the cell into established Lamp1-positive vesicles that subsequently localize to the perinuclear region. These data indicate a possible mechanism by which amelogenin, or degraded amelogenin peptides, are removed from the extracellular matrix during enamel formation and maturation. Received 27 September 2006; received after revision 24 November 2006; accepted 5 December 2006  相似文献   

17.
The plasma membrane of epithelial cells and hepatocytes is divided into two separate membrane compartments, the apical and the basolateral domain. This polarity is maintained by intracellular machinery that directs newly synthesized material into the correct target membrane. Apical protein sorting and trafficking require specific signals and different intracellular routes to the cell surface. Some of them depend on the integrity of sphingolipid/cholesterol-enriched membrane microdomains named ‘lipid rafts’, others use separate transport platforms. Certain characteristics of the heterogeneous population of apical sorting signals are described in this review and cellular factors associated with sorting and transport mechanisms are discussed. Received 5 May 2006; received after revision 12 June 2006; accepted 11 July 2006  相似文献   

18.
A possible new role for the anti-ageing peptide carnosine   总被引:5,自引:0,他引:5  
The naturally occurring dipeptide carnosine (β-alanyl-L-histidine) is found in surprisingly large amounts in long-lived tissues and can delay ageing in cultured human fibroblasts. Carnosine has been regarded largely as an anti-oxidant and free radical scavenger. More recently, an anti-glycating potential has been discovered whereby carnosine can react with low-molecular-weight compounds that bear carbonyl groups (aldehydes and ketones). Carbonyl groups, arising mostly from the attack of reactive oxygen species and ow-molecular-weight aldehydes and ketones, accumulate on proteins during ageing. Here we propose, with supporting evidence, that carnosine can react with protein carbonyl groups to produce protein-carbonyl-carnosine adducts (‘carnosinylated’ proteins). The various possible cellular fates of the carnosinylated proteins are discussed. These proposals may help explain anti-ageing actions of carnosine and its presence in non-mitotic cells of long-lived mammals. Received 29 November 1999; accepted 27 December 1999  相似文献   

19.
Rab proteins are members of the Ras superfamily of GTPases and are key regulators of intracellular vesicular transport. They undergo a cycle of GTPase activity, and this activity is interconnected to a cycle of reversible attachment to membranes. This cycle is mediated by geranylgeranylation of (usually) two C-terminal cysteines, which in turn is effected by Rab geranylgeranyltransferase in concert with REP (Rab escort protein). After delivery to their respective membranes, Rabs are activated by replacement of GDP by GTP, allowing interaction with a wide variety of effector molecules involved in vesicular transport, in particular with docking of transport vesicles to their specific target membranes. After completion of these events and GTP hydrolysis, Rabs are retrieved by GDI (GDP dissociation inhibitor) and delivered to their starting compartment. Here, the structural and mechanistic basis of events occurring in Rab delivery and cycling, and the differences between REP and GDI are discussed on the basis of recent advances in the field.Received 4 November 2004; received after revision 14 February 2005; accepted 31 March 2005  相似文献   

20.
A review of the literature suggests that the effects of nitric oxide (NO) on skeletal muscles fibers can be classified in two groups. In the first, the effects of NO are direct, due to nitrosation or metal nitrosylation of target proteins: depression of isometric force, shortening velocity of loaded or unloaded contractions, glycolysis and mitochondrial respiration. The effect on calcium release channels varies, being inhibitory at low and stimulatory at high NO concentrations. The general consequence of the direct effects of NO is to ‘brake’ the contraction and its associated metabolism. In the second group, the effects of NO are mediated by cGMP: increase of the shortening velocity of loaded or unloaded contractions, maximal mechanical power, initial rate of force development, frequency of tetanic fusion, glucose uptake, glycolysis and mitochondrial respiration; decreases of half relaxation time of tetanus and twitch, twitch time-to-peak, force maintained during unfused tetanus and of stimulus-associated calcium release. There is negligible effect on maximal force of isometric twitch and tetanus. The general consequence of cGMP-mediated effects of NO is to improve mechanical and metabolic muscle power, similar to a transformation of slow-twitch to fast-twitch muscle, an effect that we may summarize as a ‘slow-to-fast’ shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号