首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal growth factor-dependent phosphorylation of lipocortin   总被引:35,自引:0,他引:35  
R B Pepinsky  L K Sinclair 《Nature》1986,321(6065):81-84
Lipocortin-like proteins are a family of steroid-induced inhibitors of phospholipase activity with potential anti-inflammatory activity. Related proteins have been detected in a variety of tissues and species. The best characterized form is a protein of relative molecular mass (Mr) approximately 40,000 (40K), which is phosphorylated in vivo by protein tyrosine kinases and by protein serine-threonine kinases. It has been proposed that the phospholipase inhibitory activity of lipocortin can be regulated by its phosphorylation. In the A431 cell line, a protein of approximately 35K is phosphorylated by the protein tyrosine kinase activity of the epidermal growth factor (EGF) receptor. Here we report that human lipocortin is phosphorylated near its amino terminus by the EGF receptor/kinase. By peptide mapping and immunological analyses, we show that lipocortin and the endogenous 35K substrate for the EGF receptor/kinase from A431 cells are the same protein.  相似文献   

2.
Cytogenic changes are becoming increasingly important in understanding the pathogenesis of human malignancies. The t(9;22) (q34;q11) translocation is one of the most consistent and generates the Philadelphia chromosome (Ph1) (ref. 1) in chronic myeloid leukaemia (CML); it has also been observed in some acute lymphoblastic leukaemias (ALL) (ref. 2). In CML the breakpoints occur on chromosome 22 in the region designated bcr (ref. 3) and result in the expression of a bcr-abl fusion product of relative molecular mass (MT) 210,000 (210K) with associated in vitro tyrosine kinase activity (P210bcr-abl). In some cases of Ph1-positive ALL, a novel abl-related protein (P190all-abl) of 190K has been shown to have tyrosine kinase activity. In this report we demonstrate that the P190all-abl protein has a bcr determinant from the amino-terminal region, but is lacking a bcr determinant normally found in the P210bcr-abl near the bcr-abl junction. The chimaeric nature of the P190all-abl was confirmed by sequential immunoprecipitation with antisera against abl and bcr peptides.  相似文献   

3.
C Ellis  M Moran  F McCormick  T Pawson 《Nature》1990,343(6256):377-381
The critical pathways through which protein-tyrosine kinases induce cellular proliferation and malignant transformation are not well defined. As microinjection of antibodies against p21ras can block the biological effects of both normal and oncogenic tyrosine kinases, it is likely that they require functional p21ras to transmit their mitogenic signals. No biochemical link has been established, however, between tyrosine kinases and p21ras. We have identified a non-catalytic domain of cytoplasmic tyrosine kinases, SH2, that regulates the activity and specificity of the kinase domain. The presence of two adjacent SH2 domains in the p21ras GTPase-activating protein (GAP) indicates that GAP might interact directly with tyrosine kinases. Here we show that GAP, and two co-precipitating proteins of relative molecular masses 62,000 and 190,000 (p62 and p190) are phosphorylated on tyrosine in cells that have been transformed by cytoplasmic and receptor-like tyrosine kinases. The phosphorylation of these polypeptides correlates with transformation in cells expressing inducible forms of the v-src or v-fps encoded tyrosine kinases. Furthermore, GAP, p62 and p190 are also rapidly phosphorylated on tyrosine in fibroblasts stimulated with epidermal growth factor. Our results suggest a mechanism by which tyrosine kinases might modify p21ras function, and implicate GAP and its associated proteins as targets of both oncoproteins and normal growth factor receptors with tyrosine kinase activity. These data support the idea that SH2 sequences direct the interactions of cytoplasmic proteins involved in signal transduction.  相似文献   

4.
Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms couple to tyrosine kinases and consist of a p110 catalytic subunit (p110alpha, p110beta or p110delta), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110alpha activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110alpha led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110alpha exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110alpha activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110beta in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1alpha, whereas p110delta is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.  相似文献   

5.
E Eiseman  J B Bolen 《Nature》1992,355(6355):78-80
The high-affinity IgE receptor (Fc epsilon RI), which is expressed on the surface of mast cells and basophils, has a central role in immediate allergic responses. In the rat basophilic leukaemia cell line RBL-2H3, which is a model system for the analysis of Fc epsilon RI-mediated signal transduction, surface engagement of Fc epsilon RI induces histamine release and the tyrosine phosphorylation of several distinct proteins. Although the alpha, beta, and gamma subunits of Fc epsilon RI lack intrinsic tyrosine protein kinase (TPK) activity, a kinase that copurifies with Fc epsilon RI phosphorylates the beta and gamma subunits of the receptor on tyrosine residues. We report here that in RBL-2H3 cells, p56lyn and pp60c-src are activated after Fc epsilon RI crosslinking, and p56lyn coimmunoprecipitates with Fc epsilon RI. In the mouse mast-cell line PT-18, another cell type used to study FC epsilon RI-mediated signalling, tyrosine phosphorylation of proteins is also an immediate consequence of receptor crosslinking. Notably, the only detectable src protein-related TPK in PT-18 cells is p62c-yes, and it is this TPK that is activated on Fc epsilon RI engagement and coimmunoprecipitates with the receptor. Therefore, it seems that different src protein-related TPKs can associate with the same receptor and become activated after receptor engagement.  相似文献   

6.
The T lymphocyte surface protein CD4 is an integral membrane glycoprotein noncovalently associated with the tyrosine protein kinase p56lck. In normal T cells, surface association of CD4 molecules with other CD4 molecules or other T-cell surface proteins, such as the T-cell antigen receptor, stimulates the activity of the p56lck tyrosine kinase, resulting in the phosphorylation of various cellular proteins at tyrosine residues. Thus, the signal transduction in T cells generated through the surface engagement of CD4 is similar to that observed for the class of growth factor receptors possessing endogenous tyrosine kinase activity. As CD4 is also the cellular receptor for the human immunodeficiency virus (HIV), binding of the virus or gp120 (the virus surface protein responsible for specific CD4+ T-cell association) could mimic the types of immunological interactions that have previously been found to stimulate p56lck and trigger T-cell activation pathways. We have evaluated this possibility and report here that binding of HIV-1 or the virus glycoprotein gp120 to CD4+ human T cells fails to elicit detectable p56lck-dependent tyrosine kinase activation and signalling, alterations in the composition of cellular phosphotyrosine-containing proteins, or changes in intracellular Ca2+ concentration.  相似文献   

7.
Fibroblastic cultures derived from normal human tissues undergo a finite number of population doublings when serially subcultivated in vitro (see refs 1, 2 for reviews). Epidermal growth factor (EGF) serves as a mitogen for early doubling level cultures of the human fetal lung-derived cell strain, WI-38, under serum-free conditions. The ability of cells from late doubling level cultures to respond mitogenically to EGF is lost, however, despite undiminished binding of EGF throughout the replicative lifespan. The ultimate effects of EGF, that is DNA synthesis and mitosis (see ref. 4 for review), occur after a sequence of events initiated by binding of ligand to specific cellular receptors. The receptor for EGF has been characterized as a 145,000-165,000 (145 K-165 K) molecular weight doublet, and, like the receptors for platelet-derived growth factor and insulin, and the transforming proteins of certain of the RNA tumour viruses, is a tyrosine-specific protein kinase with autophosphorylating activity. Moreover, several of the cellular target molecules of tyrosine phosphorylation have been found to be substrates for two or more of these kinases. The hypothesis that tyrosine phosphorylation underlies a common mechanism of growth control prompted us to ask whether the loss of responsiveness to EGF by late doubling level WI-38 cells is accompanied by altered expression of the EGF receptor, and specifically whether changes occur in the ability of receptors from populations of cells of various in vitro ages to catalyse tyrosine autophosphorylation. We show here that autophosphorylating activity is absent from the EGF receptor of cells which have lost their mitogenic responsiveness to EGF.  相似文献   

8.
The eight catalytic subunits of the mammalian phosphoinositide-3-OH kinase (PI(3)K) family form the backbone of an evolutionarily conserved signalling pathway; however, the roles of most PI(3)K isoforms in organismal physiology and disease are unknown. To delineate the role of p110alpha, a ubiquitously expressed PI(3)K involved in tyrosine kinase and Ras signalling, here we generated mice carrying a knockin mutation (D933A) that abrogates p110alpha kinase activity. Homozygosity for this kinase-dead p110alpha led to embryonic lethality. Mice heterozygous for this mutation were viable and fertile, but displayed severely blunted signalling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin-like growth factor-1 and leptin action. Defective responsiveness to these hormones led to reduced somatic growth, hyperinsulinaemia, glucose intolerance, hyperphagia and increased adiposity in mice heterozygous for the D933A mutation. This signalling function of p110alpha derives from its highly selective recruitment and activation to IRS signalling complexes compared to p110beta, the other broadly expressed PI(3)K isoform, which did not contribute to IRS-associated PI(3)K activity. p110alpha was the principal IRS-associated PI(3)K in cancer cell lines. These findings demonstrate a critical role for p110alpha in growth factor and metabolic signalling and also suggest an explanation for selective mutation or overexpression of p110alpha in a variety of cancers.  相似文献   

9.
Syk is a protein tyrosine kinase that is widely expressed in haematopoietic cells. It is involved in coupling activated immunoreceptors to downstream signalling events that mediate diverse cellular responses including proliferation, differentiation and phagocytosis. Syk expression has been reported in cell lines of epithelial origin, but its function in these cells remains unknown. Here we show that Syk is commonly expressed in normal human breast tissue, benign breast lesions and low-tumorigenic breast cancer cell lines. Syk messenger RNA and protein, however, are low or undetectable in invasive breast carcinoma tissue and cell lines. Transfection of wild-type Syk into a Syk-negative breast cancer cell line markedly inhibited its tumour growth and metastasis formation in athymic mice. Conversely, overexpression of a kinase-deficient Syk in a Syk-positive breast cancer cell line significantly increased its tumour incidence and growth. Suppression of tumour growth by the reintroduction of Syk appeared to be the result of aberrant mitosis and cytokinesis. We propose that Syk is a potent modulator of epithelial cell growth and a potential tumour suppressor in human breast carcinomas.  相似文献   

10.
11.
12.
J L Guan  D Shalloway 《Nature》1992,358(6388):690-692
Increasing evidence indicates that the integrin family of cell adhesion receptors can transduce biochemical signals from the extracellular matrix to the cell interior to modulate cell growth and differentiation. We have shown that integrin/ligand interactions can trigger tyrosine phosphorylation of a protein of M(r) 120,000 (pp120), so it is possible that signal transduction by integrins might involve activation of intracellular protein tyrosine kinases as an early event in cell binding to the extracellular matrix. Here we report that pp120 is identical to the focal adhesion-associated protein tyrosine kinase pp125FAK (refs 3, 4). We show that tyrosine phosphorylation of this protein is modulated both by cell adhesion and transformation by pp60v-src, and that these changes in phosphorylation are correlated with increased pp125FAK tyrosine kinase activity. A model is proposed to relate these findings to the molecular basis of anchorage-independent growth of transformed cells.  相似文献   

13.
Jia S  Liu Z  Zhang S  Liu P  Zhang L  Lee SH  Zhang J  Signoretti S  Loda M  Roberts TM  Zhao JJ 《Nature》2008,454(7205):776-779
On activation by receptors, the ubiquitously expressed class IA isoforms (p110alpha and p110beta) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110alpha in growth factor and insulin signalling. To probe for distinct functions of p110beta, we constructed conditional knockout mice. Here we show that ablation of p110beta in the livers of the resulting mice leads to impaired insulin sensitivity and glucose homeostasis, while having little effect on phosphorylation of Akt, suggesting the involvement of a kinase-independent role of p110beta in insulin metabolic action. Using established mouse embryonic fibroblasts, we found that removal of p110beta also had little effect on Akt phosphorylation in response to stimulation by insulin and epidermal growth factor, but resulted in retarded cell proliferation. Reconstitution of p110beta-null cells with a wild-type or kinase-dead allele of p110beta demonstrated that p110beta possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110beta was required for G-protein-coupled receptor signalling triggered by lysophosphatidic acid and had a function in oncogenic transformation. Most strikingly, in an animal model of prostate tumour formation induced by Pten loss, ablation of p110beta (also known as Pik3cb), but not that of p110alpha (also known as Pik3ca), impeded tumorigenesis with a concomitant diminution of Akt phosphorylation. Taken together, our findings demonstrate both kinase-dependent and kinase-independent functions for p110beta, and strongly indicate the kinase-dependent functions of p110beta as a promising target in cancer therapy.  相似文献   

14.
S J Taylor  H Z Chae  S G Rhee  J H Exton 《Nature》1991,350(6318):516-518
Many hormones, neurotransmitters and growth factors, on binding to G protein-coupled receptors or receptors possessing tyrosine kinase activity, increase intracellular levels of the second messengers inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. This is due to activation of phosphoinositide-specific phospholipase(s) C (PLC), the isozymes of which are classified into groups, alpha, beta, gamma and delta. The beta, gamma and delta groups themselves contain PLC isozymes which have both common and unique structural domains. Only the gamma 1 isozyme has been implicated in a signal transduction mechanism. This involves association with, and tyrosine phosphorylation by, the ligand-bound epidermal growth factor and platelet-derived growth factor receptors, probably by means of the PLC-gamma 1-specific src homology (SH2) domain. Because EGF receptor-mediated tyrosine phosphorylation of PLC-gamma 1 stimulates catalytic activity in vitro and G proteins have been implicated in the activation of PLC, we investigated which PLC isozymes are subject to G protein regulation. We have purified an activated G protein alpha subunit that stimulates partially purified phospholipase C and now report that this G protein specifically activates the beta 1 isozyme, but not the gamma 1 and delta 1 isozymes of phospholipase C. We also show that this protein is related to the Gq class of G protein alpha subunits.  相似文献   

15.
S Kaech  L Covic  A Wyss  K Ballmer-Hofer 《Nature》1991,350(6317):431-433
Polyoma middle-T antigen is required for tumorigenesis in animals and for viral transformation of a variety of cells in culture (reviewed in ref. 1). Middle-T associates with and thereby activates p60c-src, a cellular tyrosine kinase homologous to the oncogene product of Rous sarcoma virus. Activation of p60c-src by middle-T is accompanied both by dephosphorylation of tyrosine 527, a site which negatively regulates src kinase src kinase activity (reviewed in refs 4-6) and by autophosphorylation on tyrosine 416 (refs 7-10). Phosphoprotein p60c-src is subject to cell cycle-specific regulation. It is most active during mitosis and repressed in interphase. Here we report that mitotic p60c-src is dephosphorylated at tyrosine 527. We also show that in cells expressing middle-T, src kinase activity is high both in mitosis and during interphase. An oncogenic mutant src protein, p60c-src(527F), where tyrosine 527 is substituted by phenylalanine, is also highly active in all phases of the cell cycle.  相似文献   

16.
Cultured cell lines of human tumour origin as well as cells transformed by various RNA tumour viruses secrete low molecular weight polypeptide transforming growth factors (TGFs). In addition to competing with epidermal growth factor (EGF) for binding to its cellular receptor, TGFs can transform morphologically fibroblast and epithelial cells in culture. In view of accumulating evidence that tyrosine phosphorylation activity is associated with the transforming genes of various tumour viruses, we determined whether phosphotyrosine levels were elevated in these human tumour cells. We show here that TGFs produced by human tumour cells induce phosphorylation of specific tyrosine acceptor sites in the 160,000-molecular weight (160 K) EGF receptor.  相似文献   

17.
Although activated human T and B lymphocytes express both high-affinity and low-affinity membrane receptors for interleukin-2 (IL-2), the structural features that distinguish these receptors have remained unresolved. The high-affinity receptors appear to mediate IL-2 induced T cell growth and internalization of IL-2, whereas no function has yet been ascribed to the low-affinity receptors. The Tac antigen is an IL-2 binding protein of relative molecular mass 55,000 (Mr 55K) that participates in the formation of both high- and low-affinity receptors. But Tac complementary DNA transfection and membrane fusion studies have suggested that additional T-cell components are required to produce high-affinity IL-2 receptors. In this study, we report the identification of a second human IL-2 binding protein that (1) has an Mr of approximately 70K, (2) lacks reactivity with the anti-Tac antibody, (3) binds IL-2 with intermediate affinity and (4) is present on the surface of resting T cells, large granular lymphocytes (natural killer cells), and certain T and B cell lines in the absence of the Tac antigen. Chemical crosslinking of 125I-labelled IL-2 bound to high-affinity IL-2 receptors produces labelling of both the p70 protein and the Tac antigen and the anti-Tac antibody blocks the crosslink detection of both of these proteins. Expression of Tac cDNA in a T cell line expressing the p70 protein, but lacking both Tac and high-affinity receptors, results in the reconstitution of high-affinity IL-2 receptors in these cells. Together, these findings suggest that the high-affinity human IL-2 receptor may be a membrane complex composed of at least the p70 protein and Tac antigen.  相似文献   

18.
42,000-molecular weight EGF receptor has protein kinase activity   总被引:1,自引:0,他引:1  
M Basu  R Biswas  M Das 《Nature》1984,311(5985):477-480
The epidermal growth factor (EGF) receptor and other growth factor receptors have been shown to possess tyrosine-specific protein kinase activity. Before the demonstration of kinase activity in growth factor receptors, tyrosine kinases of molecular weight (MW) 60,000 (60K) were found to be encoded by the src oncogene and other oncogenes related to src. Our earlier work on intracellular processing of the EGF receptor, a 170,000-MW polypeptide, provided evidence for proteolytic separation of well defined structural domains, and suggested to us the possibility of separating functional domains by limited proteolysis. The isolation of such kinase domains should facilitate comparison of the receptor/kinase with other well characterized kinases including those of oncogene origin. We report here the identification of a catalytically functional 42K kinase derived proteolytically from the isolated human EGF receptor. This fragment, comparable in size to pp60src, carries the kinase ATP-binding site, and functions catalytically even after detachment from the EGF-binding site and the major autophosphorylation region.  相似文献   

19.
20.
M Chinkers  S Cohen 《Nature》1981,290(5806):516-519
Transformation by several RNA tumour viruses seems to be mediated by virally coded protein kinases which specifically phosphorylate tyrosine. A tyrosine-specific protein kinase also seems to be involved in the mitogenic action of epidermal growth factor (EGF). This EGF-stimulated kinase activity is closely associated with the EGF receptor, with which it copurifies during EGF-affinity chromatography. Because both the virus- and EGF-stimulated tyrosine kinases may be involved in stimulation of cell growth, and because the viral kinases may be antigenically related to normal cell proteins, we examined the interaction of antibodies to viral tyrosine kinases with the affinity-purified EGF receptor-kinase preparation. We report here that the receptor-kinase specifically phosphorylates antibodies directed against the transforming protein kinase pp60src of Rous sarcoma virus. However, none of these antibodies, including those which cross-react with the normal cellular homologue of pp60src (pp60sarc), precipitate the receptor-kinase. These results suggest that the EGF receptor-kinase is related to, but probably not identical with, pp60sarc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号