共查询到18条相似文献,搜索用时 78 毫秒
1.
李童 《重庆工商大学学报(自然科学版)》2012,29(4):45-49
传统的主成分分析(PCA)方法在图像识别时需将图像矩阵转化成向量,造成图像向量的维数偏高,使得整个特征提取过程的计算量较大;在PCA的基础上,有人提出了二维主成分分析(2DPCA)的方法,但其本质是对图像矩阵按行进行特征提取,虽然消除了图像列的相关性,但是仍然忽视了行的相关性;因此,在此考虑一种改进的方法能同时消除图像行、列的相关性,并通过实验得到了比2DPCA更高效的识别率。 相似文献
2.
王小欧 《长春师范学院学报》2014,(1):40-44
将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用.对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别.基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA... 相似文献
3.
提出了一种基于二维小波分解和融合多特征的2DPCA(简称MMP-2DPCA)人脸识别方法.该方法对于人脸表情变化不敏感,能够很好地压缩和表征原始人脸图像;融合图像既能反映人脸的全局特征,又能反映人脸的局部特征,具有更强的表达能力和判别能力.在ORL人脸库上的实验表明:MMP-2DPCA方法具有有效性. 相似文献
4.
结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监督学习中的自学习技术,对未知类别标签的人脸样本进行分类,并将具有高置信度的人脸样本加入到训练集中,以此增加训练集中的人脸样本数量.在ORL人脸库和Yale人脸库的实验结果,表明了提出方法的有效性. 相似文献
5.
李靖平 《浙江万里学院学报》2014,(2):93-98
文章将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用。对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别。基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA比2DPCA算法具有更高的识别率。结论 M-2DPCA充分利用了图像的协方差信息,在人脸识别方面具有较高的识别率和鲁棒性方面,对进一步研究人脸识别具有重要的意义。 相似文献
6.
主成分分析(principal component analysis:PCA)已成功用于人脸识别,但基于主成分分析的人脸识别方法需要将图像数据向量化,而向量化后的图像样本维数非常大,计算代价非常高.二维主成分分析(2 di mension principal component analysis:2DPCA)直接处理图像数据,不需要向量化的过程,2DPCA降低了计算复杂度,但是2DPCA与PCA相比,需要存储更多的系数,即要占用更多的存储空间.本文提出了一种基于小波变换和2DPCA的人脸识别方法,可以克服上述缺点,实验结果证明了该方法的有效性. 相似文献
7.
人脸识别过程中,针对二维主成分分析(2DPCA)算法在特征提取和数据降维上存在的问题,本文首先引入双向二维主成分分析(2D2DPCA)算法,该算法同时考虑图像行与列方向上的信息.考虑到人脸图像存在信息冗余而影响识别率的问题,于是本文提出一种基于小波加权双向二维主成分分析(WT-W2D2DPCA)的人脸识别算法.该算法首先采用二级小波分解对人脸图像进行预处理,提取其低频部分;然后根据人脸图像的特性,将低频部分进行奇偶分解,并引入加权思想,重组低频人脸图像,最后在ORL人脸数据库上进行双向二维主成分分析.实验结果表明,该方法不仅克服了传统2DPCA系数矩阵大的问题,而且得到了比传统的2DPCA、2D2DPCA算法更好的识别效果. 相似文献
8.
提出一种结合图像离散小波变换和模块2DPCA的方法.首先通过DWT将红外人脸图像通过小波一级分解成4个子带,用模块2DPCA的方法对4个子带进行特征提取,得到4个子带的特征向量,然后对每个子带进行分类,将所得4个识别结果进行决策融合,得到最终的识别结果.同基于PCA和模块2DPCA方法相比,所提出的方法能很好利用人脸图像的有用判别信息,并得到更好的识别效果. 相似文献
9.
针对直接线性鉴别分析(DLDA)没有有效利用人脸对称性特征,及其在人脸识别中训练样本不足的问题,依据人脸较为明显的镜像对称性,结合该特性在直接线性鉴别分析的基础上提出对称直接线性鉴别分析方法。采用镜像变换得到奇对称样本和偶对称样本,再分别提取各奇偶对称样本特征分量,最后采用最小欧氏距离进行分类。通过在ORL和YALE人脸数据库上的实验证明,该算法不仅有效利用了镜像样本,扩大了训练样本容量;而且取得了比直接线性鉴别分析更好的识别性能。 相似文献
10.
提出了一种双向二维PCA((2D)2PCA)及改进遗传算法(GA)相结合的人脸识别方法.该方法首先利用(2D)2PCA分别从图像的行、列方向进行特征提取,然后通过遗传算法对提取的特征空间以并行的方式进行优化,得到最优行、列特征空间,最后根据最优特征空间进行分类.在ORL人脸库上的实验结果表明,该方法较之传统的方法具有更高的识别率及识别速度,在各种鉴别特征维数下更具鲁棒性,是有效的人脸识别方法. 相似文献
11.
储荣 《河海大学学报(自然科学版)》2008,36(6):856-859
在模块2D PCA方法的基础上提出了伪模块2D PCA的人脸识别方法.该方法不仅保留了模块2D PCA方法在特征抽取之前无需将图像矩阵转化为图像向量、能快速降低鉴别特征的维数、可以完全避免使用矩阵的奇异值分解等优点,而且在降维的同时尽可能保持了原样本的变化信息,使得降维后的同类数据样本尽可能保持相似.在ORL人脸数据库上的实验结果表明,伪模块2D PCA在识别性能上优于模块2D PCA. 相似文献
12.
针对分块PCA算法对位移、旋转等几何变化比较敏感的缺点,提出一种基于分块PCA和奇异值分解相结合的人脸识别算法。该算法分别提取分块子图像的PCA特征和奇异值特征,在此基础上得到同时包含分块PCA和奇异值信息的距离测度,利用最小距离分类器进行分类识别。在ORL人脸库上的实验结果表明,该方法能够得到较高的识别率。 相似文献
13.
基于PCA与ICA的人脸识别算法研究 总被引:2,自引:0,他引:2
ICA是一种基于数据高阶统计信息的有效的数据独立特征提取技术,它能够更好地表示人脸的局部特征,ICA是PCA从二阶统计分析向高阶统计分析的拓展.本文提出了一种加权融合这两种技术的人脸特征提取算法,并结合不同的相似性度量进行了人脸识别实验.结果表明,该方法比用一种单独的特征提取方式识别率要高. 相似文献
14.
甘守飞 《佛山科学技术学院学报(自然科学版)》2015,(3):52-55
通过分析人脸识别流程和结构设计分析得出分类算法的选择决定着人脸识别结果质量;从而对经典k NN算法进行分析,提出了一种动态取得k值的改进k NN分类算法。通过实验测试,证明改进的k NN分类算法可以有效地提高识别精度的稳定性。 相似文献
15.
远程身份认证是远程教育系统亟待解决的问题之一,为实现对学习者身份的实时认证,提出了基于人脸识别技术的身份认证方法。在对有关人脸识别技术分析的基础上,提出二阶双向二维主成分分析特征提取方法,减小了采集环境对人脸准确识别的影响。提出的方法可有效解决“用户名+密码”等目前广泛采用的静态认证方式带来的种种隐患,为远程教育的健康发展创造了有利条件。 相似文献
16.
人脸检测与识别技术综述 总被引:10,自引:2,他引:10
人脸的检测与识别技术因其巨大的应用价值及市场潜力,引起各方面的关注,已经成为图像工程和模式识别领域的研究热点。文章在回顾人脸检测与识别技术发展历程的基础上,对人脸检测与识别的多种相关技术作了介绍与评论,并讨论了该技术的最新发展方向及其国内的发展情况。 相似文献
17.
基于2DLDA与FSVM的人耳识别 总被引:1,自引:0,他引:1
针对人耳图像特征提取和识别方面存在的问题,提出一种将二维线性鉴别分析(2DLDA)和模糊支持向量机(FSVM)相结合的人耳图像识别方法.利用2DLDA将人耳图像直接投影,提取的人耳特征,可以保留人耳图像样本的大量类内和类间信息.同时,FSVM在支持向量机(SVM)的基础上引入隶属度参数,更加适合多类问题.实验结果表明,该方法与2DLDA相比具有更高的识别率. 相似文献
18.
针对人脸识别中传统的Gabor小波方法存在特征维数高、识别时间长、存储开销大的缺点,提出了一种结合奇异值分解和Gabor小波的改进方法.首先通过Gabor小波变换对人脸图像滤波得到特征图像,然后对训练集的特征图像进行奇异值分解获取基空间,将人脸图像投影到统一的基空间提取奇异值特征,再选择一定数量的奇异值构成人脸鉴别矢量,最后采用最近邻分类器进行识别.在ORL人脸库上的实验结果表明,该方法在识别性能上优于单一的Gabor小波方法. 相似文献