首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Human actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively, which might be particularly important in the face of other global changes. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 micromol mol-1, versus elevated, 560 micromol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.  相似文献   

2.
Arctic microorganisms respond more to elevated UV-B radiation than CO2   总被引:5,自引:0,他引:5  
Surface ultraviolet-B radiation and atmospheric CO2 concentrations have increased as a result of ozone depletion and burning of fossil fuels. The effects are likely to be most apparent in polar regions where ozone holes have developed and ecosystems are particularly sensitive to disturbance. Polar plant communities are dependent on nutrient cycling by soil microorganisms, which represent a significant and highly labile portion of soil carbon (C) and nitrogen (N). It was thought that the soil microbial biomass was unlikely to be affected by exposure of their associated plant communities to increased UV-B. In contrast, increasing atmospheric CO2 concentrations were thought to have a strong effect as a result of greater below-ground C allocation. In addition, there is a growing belief that ozone depletion is of only minor environmental concern because the impacts of UV-B radiation on plant communities are often very subtle. Here we show that 5 years of exposure of a subarctic heath to enhanced UV-B radiation both alone and in combination with elevated CO2 resulted in significant changes in the C:N ratio and in the bacterial community structure of the soil microbial biomass.  相似文献   

3.
Hu S  Chapin FS  Firestone MK  Field CB  Chiariello NR 《Nature》2001,409(6817):188-191
Carbon accumulation in the terrestrial biosphere could partially offset the effects of anthropogenic CO2 emissions on atmospheric CO2. The net impact of increased CO2 on the carbon balance of terrestrial ecosystems is unclear, however, because elevated CO2 effects on carbon input to soils and plant use of water and nutrients often have contrasting effects on microbial processes. Here we show suppression of microbial decomposition in an annual grassland after continuous exposure to increased CO2 for five growing seasons. The increased CO2 enhanced plant nitrogen uptake, microbial biomass carbon, and available carbon for microbes. But it reduced available soil nitrogen, exacerbated nitrogen constraints on microbes, and reduced microbial respiration per unit biomass. These results indicate that increased CO2 can alter the interaction between plants and microbes in favour of plant utilization of nitrogen, thereby slowing microbial decomposition and increasing ecosystem carbon accumulation.  相似文献   

4.
Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition.  相似文献   

5.
以江苏东台林场5年生杨树人工林为对象,在2012年6月设置了不同施肥处理(N、P、K复合肥,T1; 有机肥,T2; 生物炭,T3; N、P、K复合肥+生物炭,T4; 有机肥+生物炭,T5; 对照,CK),并在2012年8月至2013年6月期间每2个月1次共进行6次重复土壤取样,研究了不同施肥模式对土壤微生物生物量C、N、P(SMBC、SMBN、SMBP)的影响。结果显示:①5种施肥模式均显著提高了SMBC和SMBN,但对SMBP的影响较小,仅T1处理与对照间达到显著性差异; ②在0~10 cm土层仅T5处理显著降低了SMBC与SMBN的比值,在≥10~25 cm土层各处理SMBC与SMBN的比值均未显著下降,而在≥25~40 cm土层T1、T2、T4和T5处理的SMBC与SMBN的比值均显著下降,表明不同施肥模式对土壤N供应能力的改善作用随土层深度的增加而增加。综合分析表明,T4处理最有利于提高杨树人工林SMBC、SMBN和SMBP的含量,同时有利于提高土壤对植物生长所需有效N的供给,因此T4处理即N、P、K复合肥+生物炭可作为该区域杨树人工林的最佳施肥模式。  相似文献   

6.
大气CO2浓度升高对棉花生理特性和生长的影响   总被引:9,自引:0,他引:9  
根据在人工气候室取得的试验资料,分析了大气CO2 浓度倍增对棉花叶气孔阻力和导度、叶温、叶光合和蒸腾速率、生长状况与干物质积累等的影响.结果表明,大气CO2 浓度倍增,棉花叶气孔阻力增加,导度降低,叶温增加,光合速率增大,蒸腾速率降低,水分利用效率明显提高,棉花生长加快.这些性质的变化在不同土壤水分条件下(高低两种水分处理)产生明显的差异,表现为大气CO2 浓度增加对光合速率和生长的正效应及其对蒸腾的抑制作用削弱了水分胁迫对棉花光合和生长产生的不利影响,在低水分条件下棉花水分利用效率增加的比例大于高水分条件下的  相似文献   

7.
Collins S  Bell G 《Nature》2004,431(7008):566-569
Estimates of the effect of increasing atmospheric CO2 concentrations on future global plant production rely on the physiological response of individual plants or plant communities when exposed to high CO2 (refs 1-6). Plant populations may adapt to the changing atmosphere, however, such that the evolved plant communities of the next century are likely to be genetically different from contemporary communities. The properties of these future communities are unknown, introducing a bias of unknown sign and magnitude into projections of global carbon pool dynamics. Here we report a long-term selection experiment to investigate the phenotypic consequences of selection for growth at elevated CO2 concentrations. After about 1,000 generations, selection lines of the unicellular green alga Chlamydomonas failed to evolve specific adaptation to a CO2 concentration of 1,050 parts per million. Some lines, however, evolved a syndrome involving high rates of photosynthesis and respiration, combined with higher chlorophyll content and reduced cell size. These lines also grew poorly at ambient concentrations of CO2. We tentatively attribute this outcome to the accumulation of conditionally neutral mutations in genes affecting the carbon concentration mechanism.  相似文献   

8.
Rice (\%Oryza sativa\% cv. Jindao 1187) was grown in open_top chambers which contained ambient and enriched CO\-2. CO\-2 elevation stimulated rice tillering during early vegetative stage. However, panicle dry weight per plant did not change at maturity stage. Root biomass was enhanced by high CO\-2. Root / shoot ratio was increased under high CO\-2 at maturity, indicating more carbon allocation to the below_bround part in rice under high CO\-2.  相似文献   

9.
森林土壤是温室气体重要的源和汇。探讨不同森林管理和全球大气变化下土壤温室气体通量特征,为有效减少温室气体排放及森林可持续管理等提供参考。笔者从森林土壤温室气体(forest soil green house gases)、森林管理(forest mangement)和全球大气变化(global atmospheric change)3个关键研究点,查阅近年来相关研究成果,归纳森林管理和全球大气变化下土壤温室气体通量的一般性模式。CO2、CH4和N2O是3种重要温室气体,其通量间存在协同、消长和随机型耦合关系。森林管理如火烧、采伐和造林等显著影响土壤温室气体通量。一般情况下,火烧导致土壤N2O通量降低,CH4吸收量增加,CO2通量因火烧类型、火烧强度、生态系统类型不同出现增加、减低和无影响3种结果; 采伐通常导致土壤CO2、CH4和N2O排放增加; 造林可使土壤CO2排放减少,对N2O和CH4通量的影响随生态系统类型、造林树种等而改变。全球大气变化如CO2浓度升高、氮沉降和气温升高影响森林土壤温室气体通量。通常,CO2浓度升高导致土壤CO2和N2O排放量增加,CH4吸收量降低; 氮沉降促进土壤N2O排放、抑制CH4吸收。气温升高导致土壤CO2和N2O排放增加。森林管理和全球大气变化对土壤温室气体通量的综合影响是非叠加的,有效的森林管理可能改变土壤温室气体通量对全球大气变化的响应。  相似文献   

10.
Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600?p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0?°C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3?years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.  相似文献   

11.
Nonlinear grassland responses to past and future atmospheric CO(2)   总被引:17,自引:0,他引:17  
Carbon sequestration in soil organic matter may moderate increases in atmospheric CO(2) concentrations (C(a)) as C(a) increases to more than 500 micromol mol(-1) this century from interglacial levels of less than 200 micromol mol(-1) (refs 1 6). However, such carbon storage depends on feedbacks between plant responses to C(a) and nutrient availability. Here we present evidence that soil carbon storage and nitrogen cycling in a grassland ecosystem are much more responsive to increases in past C(a) than to those forecast for the coming century. Along a continuous gradient of 200 to 550 micromol mol(-1) (refs 9, 10), increased C(a) promoted higher photosynthetic rates and altered plant tissue chemistry. Soil carbon was lost at subambient C(a), but was unchanged at elevated C(a) where losses of old soil carbon offset increases in new carbon. Along the experimental gradient in C(a) there was a nonlinear, threefold decrease in nitrogen availability. The differences in sensitivity of carbon storage to historical and future C(a) and increased nutrient limitation suggest that the passive sequestration of carbon in soils may have been important historically, but the ability of soils to continue as sinks is limited.  相似文献   

12.
Loya WM  Pregitzer KS  Karberg NJ  King JS  Giardina CP 《Nature》2003,425(6959):705-707
In the Northern Hemisphere, ozone levels in the troposphere have increased by 35 per cent over the past century, with detrimental impacts on forest and agricultural productivity, even when forest productivity has been stimulated by increased carbon dioxide levels. In addition to reducing productivity, increased tropospheric ozone levels could alter terrestrial carbon cycling by lowering the quantity and quality of carbon inputs to soils. However, the influence of elevated ozone levels on soil carbon formation and decomposition are unknown. Here we examine the effects of elevated ozone levels on the formation rates of total and decay-resistant acid-insoluble soil carbon under conditions of elevated carbon dioxide levels in experimental aspen (Populus tremuloides) stands and mixed aspen-birch (Betula papyrifera) stands. With ambient concentrations of ozone and carbon dioxide both raised by 50 per cent, we find that the formation rates of total and acid-insoluble soil carbon are reduced by 50 per cent relative to the amounts entering the soil when the forests were exposed to increased carbon dioxide alone. Our results suggest that, in a world with elevated atmospheric carbon dioxide concentrations, global-scale reductions in plant productivity due to elevated ozone levels will also lower soil carbon formation rates significantly.  相似文献   

13.
Rau GH  Takahashi T  Des Marais DJ 《Nature》1989,341(6242):516-518
The stable-carbon isotopic composition of marine organic material has varied significantly over geological time, and reflects significant excursions in the isotopic fractionation associated with the uptake of carbon by marine biota. For example, low 13C/12C in Cretaceous sediments has been attributed to elevated atmospheric (and hence oceanic) CO2 partial pressures. A similar depletion in 13C present-day Antarctic plankton has also been ascribed to high CO2 availability. We report, however, that this high-latitude isotope depletion develops at CO2 partial pressures (pCO2 levels) that are often below that of the present atmosphere (340 microatmospheres) , and usually below that of equatorial upwelling systems (> 340 microatmospheres). Nevertheless, because of the much lower water temperatures and, hence, greater CO2 solubility at high latitude, the preceding pCO2 measurements translate into Antarctic surface-water CO2 (aq) concentrations that are as much as 2.5 times higher than in equatorial waters. We calculate that an oceanic pCO2 level of > 800 microatmospheres (over twice the present atmospheric pCO2) in a warmer low-latitude Cretaceous ocean would have been required to produce the plankton 13C depletion preserved in Cretaceous sediments.  相似文献   

14.
【目的】探究正常大气CO2浓度升高对宁夏枸杞果实发育期形态及发育期蔗糖、果糖、葡萄糖等糖分积累过程的影响,以期为气候变化对果实发育期糖分积累影响提供参考。【方法】以宁夏枸杞苗木为试材,采用开顶气室模拟控制3个CO2浓度:正常大气CO2浓度[(380±20) μmol/mol,CK]作为对照,0.5倍增浓度[(570±20) μmol/mol,TR1],1倍增浓度[(760±20) μmol/mol,TR2];分别取经不同CO2浓度处理的宁夏枸杞果实幼果期至成熟期果品,测定其形态指标及不同发育期含糖量。【结果】TR1、TR2处理的宁夏枸杞果实较CK处理,在幼果期、青果期单果质量,以及横径均显著上升。青果期,其纵径、淀粉及果糖含量较CK处理显著增加。至成熟期,果实横径显著增大,蔗糖含量显著上升,单果纵径/横径显著下降,而果糖、葡萄糖、淀粉含量处理间无显著差异;TR1、TR2处理宁夏枸杞果实较CK处理在转色期蔗糖、淀粉质量比显著上升,初熟期显著下降,成熟期极显著上升;CO2浓度升高处理使宁夏枸杞果实在青果期单果质量与淀粉含量、转色期单果质量与果糖含量、转色期蔗糖与淀粉含量、成熟期单果质量与蔗糖含量间均达显著正相关。【结论】CO2浓度升高可显著促进宁夏枸杞在幼果期、青果期的果实横径、单果质量,使其青果期纵径及果糖、淀粉含量显著增加,处理至成熟期,可使宁夏枸杞果实单果质量、蔗糖含量显著上升,纵径/横径显著下降,影响果实发育过程中淀粉和蔗糖的积累过程。  相似文献   

15.
为了探索莲座期红花对氮、磷、钾肥的需求量及其与土壤生态化学计量的相关性,进行添加氮肥、磷肥、钾肥的田间独立试验。结果显示:1)不同处理水平下土壤和植物各器官养分含量不同且差异显著。土壤速效氮随氮肥、钾肥水平增大而增大,而速效磷和速效钾则降低,且随施磷水平增大变化不明显;各肥料对红花的作用总体表现为:叶和根元素含量受磷肥影响较大,钾肥较小;茎受氮肥影响较大,磷肥较小;2)生物量随施肥量增大而增大,而受钾肥影响不显著;N2、P2、K1水平下叶N/P最小,而生物量与叶N/P负相关,即在此水平下生物量最大。结果表明,施肥促进了土壤和植物各器官养分不均衡吸收和分配,促进了植物的生长,当施肥达到各器官吸收饱和点后,由各器官元素比值调节红花的生长。因此,建议选取N2、P2、K1水平进行红花莲座期施肥。  相似文献   

16.
Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean   总被引:13,自引:0,他引:13  
Fixed nitrogen (N) often limits the growth of organisms in terrestrial and aquatic biomes, and N availability has been important in controlling the CO2 balance of modern and ancient oceans. The fixation of atmospheric dinitrogen gas (N2) to ammonia is catalysed by nitrogenase and provides a fixed N for N-limited environments. The filamentous cyanobacterium Trichodesmium has been assumed to be the predominant oceanic N2-fixing microorganism since the discovery of N2 fixation in Trichodesmium in 1961 (ref. 6). Attention has recently focused on oceanic N2 fixation because nitrogen availability is generally limiting in many oceans, and attempts to constrain the global atmosphere-ocean fluxes of CO2 are based on basin-scale N balances. Biogeochemical studies and models have suggested that total N2-fixation rates may be substantially greater than previously believed but cannot be reconciled with observed Trichodesmium abundances. It is curious that there are so few known N2-fixing microorganisms in oligotrophic oceans when it is clearly ecologically advantageous. Here we show that there are unicellular cyanobacteria in the open ocean that are expressing nitrogenase, and are abundant enough to potentially have a significant role in N dynamics.  相似文献   

17.
紫花苜蓿对土壤中铜的富集效应及其生理响应   总被引:8,自引:2,他引:8  
依据我国土壤环境质量标准设置10个铜污染指标(1~400mg.kg-1),采用盆栽试验研究了铜污染对紫花苜蓿的生物量、铜积累、叶绿素和游离脯氨酸含量等的影响,探讨叶绿素和游离脯氨酸含量与紫花苜蓿铜积累之间的相互关系.结果表明叶绿素和游离脯氨酸的含量变化分别与紫花苜蓿的生物量和铜积累量的变化趋势一致.随土壤中铜含量的增加,叶绿素含量先增加后减小.游离脯氨酸含量在外源添加铜含量高于10mg.kg-1时与对照组相比增加显著(P<0.05).紫花苜蓿根系的铜积累显著高于地上部分.铜含量为400mg.kg-1时紫花苜蓿铜的总积累量达每盆617μg,是对照组的12倍左右,表明紫花苜蓿对铜污染土壤具有潜在的...  相似文献   

18.
The HIC signalling pathway links CO2 perception to stomatal development   总被引:9,自引:0,他引:9  
Stomatal pores on the leaf surface control both the uptake of CO2 for photosynthesis and the loss of water during transpiration. Since the industrial revolution, decreases in stomatal numbers in parallel with increases in atmospheric CO2 concentration have provided evidence of plant responses to changes in CO2 levels caused by human activity. This inverse correlation between stomatal density and CO2 concentration also holds for fossil material from the past 400 million years and has provided clues to the causes of global extinction events. Here we report the identification of the Arabidopsis gene HIC (for high carbon dioxide), which encodes a negative regulator of stomatal development that responds to CO2 concentration. This gene encodes a putative 3-keto acyl coenzyme A synthase--an enzyme involved in the synthesis of very-long-chain fatty acids. Mutant hic plants exhibit up to a 42% increase in stomatal density in response to a doubling of CO2. Our results identify a gene involved in the signal transduction pathway responsible for controlling stomatal numbers at elevated CO2.  相似文献   

19.
植物与土壤之间相互反馈的格局、过程与机制,不但是决定生态系统结构、功能及过程的关键科学问题,而且是陆地生态系统响应全球变化的重要组成部分。基于目前国内外研究现状,从养分循环角度剖析“植物-土壤”间的反馈效应,探明相互反馈在空间尺度(根面、根际、种类、生态系统以及区域等)与时间尺度(秒至千年)上的级联效应及其变化格局;阐明根际、植物种类、生态系统及区域地理等水平上“植物-土壤”的相互反馈机制,重点揭示根系分泌、共生、生长及代谢的根际界面过程对植物水分/养分吸收与土壤物理学修饰的调控机制,剖析“植物种类-凋落物化学-土壤生物-土壤有机质”相互作用对地上-地下养分循环过程的驱动机制,运用“上行-下行控制理论及腐屑食物网模型”揭示地上-地下生物群落交互作用的过程与机制,以及土壤地质演变(岩石风化模式、土壤形成模式及土壤养分格局的变化)与区域植被演替(优势种更替及植被分布模式、地上-地下凋落物输入格局等的变化)相互反馈的过程与机制;从“植物-土壤”相互反馈的理论视角,分析生态退化与恢复、外来物种生态入侵、大气氮沉降、二氧化碳浓度升高以及植物多样性减少等全球生态问题的特征、形成机制以及可能的应对策略,揭示生态系统“地上-地下”相互反馈的生态学过程,以及陆地生态系统对全球生态环境变化的响应特征与机理。  相似文献   

20.
Riebesell U  Zondervan I  Rost B  Tortell PD  Zeebe RE  Morel FM 《Nature》2000,407(6802):364-367
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica. This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号