首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of this article is to provide a historical response to Michel Janssen’s (2009) claim that the special theory of relativity establishes that relativistic phenomena are purely kinematical in nature, and that the relativistic study of such phenomena is completely independent of dynamical considerations regarding the systems displaying such behavior. This response will be formulated through a historical discussion of one of Janssen's cases, the experiments carried out by Walter Kaufmann on the velocity-dependence of the electron's mass. Through a discussion of the different responses formulated by early adherents of the principle of relativity (Albert Einstein, Max Planck, Hermann Minkowski and Max von Laue) to these experiments, it will be argued that the historical development of the special theory of relativity argues against Janssen's historical presentation of the case, and that this raises questions about his general philosophical claim. It will be shown, more specifically, that Planck and Einstein developed a relativistic response to the Kaufmann experiments on the basis of their study of the dynamics of radiation phenomena, and that this response differed significantly from the response formulated by Minkowski and Laue. In this way, it will be argued that there were, at the time, two different approaches to the theory of relativity, which differed with respect to its relation to theory, experiment, and history: Einstein's and Planck's heuristic approach, and Minkowski's and Laue's normative approach. This indicates that it is difficult to say, historically speaking, that the special theory of relativity establishes the kinematical nature of particular phenomena. Instead, it will be argued that the theory of relativity should not be seen as a theory but rather as outlining an approach, and that the nature of particular scientific phenomena is something that is open to scientific debate and dispute.  相似文献   

3.
In this paper I argue that the case of Einstein׳s special relativity vs. Hendrik Lorentz׳s ether theory can be decided in terms of empirical evidence, in spite of the predictive equivalence between the theories. In the historical and philosophical literature this case has been typically addressed focusing on non-empirical features (non-empirical virtues in special relativity and/or non-empirical flaws in the ether theory). I claim that non-empirical features are not enough to provide a fully objective and uniquely determined choice in instances of empirical equivalence. However, I argue that if we consider arguments proposed by Richard Boyd, and by Larry Laudan and Jarret Leplin, a choice based on non-entailed empirical evidence favoring Einstein׳s theory can be made.  相似文献   

4.
In this paper I concentrate on the dynamic aspects of the special theory of relativity (in the non-Minkowski formalism), and not on the kinematic part of the story as is usually done. Following up the dynamic story leads to a new point of view as to Poincaré's important role in the development of special relativity. Much of Poincaré's dynamic work did not enter into Einstein's 1905 theory, since Einstein was mainly occupied with kinematics. However, the dynamic part is most fundamental in the development of the special theory of relativity after 1905. In this paper I consider the main developments of relativistic dynamics in which I demonstrate that much response to Poincaré's dynamic research can be found. I argue that Poincaré's dynamic work assisted in departing from Einstein's electrodynamic theory towards relativistic dynamics (independent of electrodynamics).  相似文献   

5.
I show how quantum mechanics, like the theory of relativity, can be understood as a ‘principle theory’ in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World.  相似文献   

6.
We discuss Manchak (2009a)'s result that there are locally (but not globally) isometric universes observationally indistinguishable from our own. This theorem makes the epistemic predicament of modern cosmology particularly problematic and the prospects of ever gaining knowledge of the global structure of the universe rather unlikely in the context of general relativity. We argue however that this conclusion is too quick; indeed, Manchak's theorem deploys spacetimes which are not physically reasonable, since they have features which are not the product of any physical process. This ultimately rests on the fact that local isometry between two spacetimes is not sufficient to guarantee that they are both physically reasonable. We propose an additional condition to properly define when a spacetime is physically reasonable, and we show that Manchak's spacetimes do not satisfy this further demand.  相似文献   

7.
The 1919 British astronomical expedition led by Arthur Stanley Eddington to observe the deflection of starlight by the sun, as predicted by Einstein's relativistic theory of gravitation, is a fascinating example of the importance of expert testimony in the social transmission of scientific knowledge. While Popper lauded the expedition as science at its best, accounts by Earman and Glymour, Collins and Pinch, and Waller are more critical of Eddington's work. Here I revisit the eclipse expedition to dispute the characterization of the British response to general relativity as the blind acceptance of a partisan's pro-relativity claims by colleagues incapable of criticism. Many factors served to make Eddington the trusted British expert on relativity in 1919, and his experimental results rested on debatable choices of data analysis, choices criticized widely since but apparently not widely by his British contemporaries. By attending to how and to whom Eddington presented his testimony and how and by whom this testimony was received, I suggest, we may recognize as evidentially significant corroborating testimony from those who were expert not in relativity but in observational astronomy. We are reminded that even extraordinary expert testimony is neither offered nor accepted entirely in an epistemic vacuum.  相似文献   

8.
In the 1830s, W. R. Hamilton established a formal analogy between optics and mechanics by constructing a mathematical equivalence between the extremum principles of ray optics (Fermat's principle) and corpuscular mechanics (Maupertuis's principle). Almost a century later, this optical-mechanical analogy played a central role in the development of wave mechanics. Schrödinger was well acquainted with Hamilton's analogy through earlier studies. From Schrödinger's research notebooks, we show how he used the analogy as a heuristic tool to develop de Broglie's ideas about matter waves and how the role of the analogy in his thinking changed from a heuristic tool into a formal constraint on possible wave equations. We argue that Schrödinger only understood the full impact of the optical-mechanical analogy during the preparation of his second communication on wave mechanics: Classical mechanics is an approximation to the new undulatory mechanics, just as ray optics is an approximation to wave optics. This completion of the analogy convinced Schrödinger to stick to a realist interpretation of the wave function, in opposition to the emerging mainstream. The transformations in Schrödinger's use of the optical-mechanical analogy can be traced in his research notebooks, which offer a much more complete picture of the development of wave mechanics than has been previously thought possible.  相似文献   

9.
In this paper I critically review attempts to formulate and derive the geodesic principle, which claims that free massive bodies follow geodesic paths in general relativity theory. I argue that if the principle is (canonically) interpreted as a law of motion describing the actual evolution of gravitating bodies, then it is impossible to generically apply the law to massive bodies in a way that is coherent with Einstein's field equations. Rejecting the canonical interpretation, I propose an alternative interpretation of the geodesic principle as a type of universality thesis analogous to the universality behavior exhibited in thermal systems during phase transitions.  相似文献   

10.

In French mechanical treatises of the nineteenth century, Newton’s second law of motion was frequently derived from a relativity principle. The origin of this trend is found in ingenious arguments by Huygens and Laplace, with intermediate contributions by Euler and d’Alembert. The derivations initially relied on Galilean relativity and impulsive forces. After Bélanger’s Cours de mécanique of 1847, they employed continuous forces and a stronger relativity with respect to any commonly impressed motion. The name “principle of relative motions” and the very idea of using this principle as a constructive tool were born in this context. The consequences of Poincaré’s and Einstein’s awareness of this approach are analyzed. Lastly, the legitimacy and significance of a relativity-based derivation of Newton’s second law are briefly discussed in a more philosophical vein.

  相似文献   

11.
We distinguish two orientations in Weyl's analysis of the fundamental role played by the notion of symmetry in physics, namely an orientation inspired by Klein's Erlangen program and a phenomenological-transcendental orientation. By privileging the former to the detriment of the latter, we sketch a group(oid)-theoretical program—that we call the Klein-Weyl program—for the interpretation of both gauge theories and quantum mechanics in a single conceptual framework. This program is based on Weyl's notion of a “structure-endowed entity” equipped with a “group of automorphisms”. First, we analyze what Weyl calls the “problem of relativity” in the frameworks provided by special relativity, general relativity, and Yang-Mills theories. We argue that both general relativity and Yang-Mills theories can be understood in terms of a localization of Klein's Erlangen program: while the latter describes the group-theoretical automorphisms of a single structure (such as homogenous geometries), local gauge symmetries and the corresponding gauge fields (Ehresmann connections) can be naturally understood in terms of the groupoid-theoretical isomorphisms in a family of identical structures. Second, we argue that quantum mechanics can be understood in terms of a linearization of Klein's Erlangen program. This stance leads us to an interpretation of the fact that quantum numbers are “indices characterizing representations of groups” ((Weyl, 1931a), p.xxi) in terms of a correspondence between the ontological categories of identity and determinateness.  相似文献   

12.
In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson, 2012, Halvorson, 2015 and Weatherall (2015a), the two are equivalent theories.  相似文献   

13.
In this article, we aim at clarifying the role played by Fizeau’s 1851 experiment, both in the context of discovery and in the context of justification of the special theory of relativity. In 1907 Laue proved that Fresnel's formula was a consequence of the relativistic composition of velocities; since then, Einstein regarded Fizeau's experiment as confirmatory evidence for his theory, and even as a crucial experiment in favor of the relativistic addition of velocities. On the other hand, in the 1920's Einstein stated that this experiment was decisive in the path that led him to the discovery of his theory before 1905, but he did not explain why. We survey all the available evidence on this subject and conclude that the original ether-drag experiment was reinterpreted within a new conceptual framework in which the meaning of the very concept of velocity undergoes a radical change.  相似文献   

14.
This paper analyses documents from several US archives in order to examine the controversy that raged within the US scientific community over Dayton C. Miller's ether-drift experiments. In 1925, Miller announced that his repetitions of the famous Michelson-Morley experiment had shown a slight but positive result: an ether-drift of about 10 kilometres per second. Miller's discovery triggered a long debate in the US scientific community about the validity of Einstein's relativity theories. Between 1926 and 1930 some researchers repeated the Michelson-Morley experiment, but no one found the same effect as Miller had. The inability to confirm Miller's result, paired with the fact that no other ether theory existed that could compete with special relativity theory, made his result an enigmatic one. It thus remained of little interest to the scientific community until 1954, when Robert S. Shankland and three colleagues reanalysed the data and proposed that Miller's periodic fringe shift could be attributed to temperature effects. Whereas most of the scientific community readily accepted this explanation as the conclusion of the matter, some contemporary anti-relativists have contested Shankland's methodology up to now. The historical accounts of Miller's experiments provide contradictory reports of the reaction of the US scientific community and do not analyse the mechanisms of the controversy. I will address this shortcoming with an examination of private correspondence of several actors involved in these experiments between 1921 and 1955. A complex interconnection of epistemic elements, sociological factors, and personal interests played a fundamental role in the closure of this experimental controversy in the early 1930s, as well as in the reception of Shankland's reanalysis in the 1950s.  相似文献   

15.
The 1935 conflict on the nature of relativistic degeneracy that pitted Subrahmanyan Chandrasekhar against Arthur Stanley Eddington is part of astronomical lore. In recountings of the events surrounding the dispute, the complaint is frequently aired that Chandrasekhar, who faced the pre-eminent astrophysicist of his time, did not enjoy the support of the astronomical community, which opted to side instead with Eddington. We reconsider these statements in the light of the published record and argue that the reception of Chandrasekhar's ideas was, if anything, rather favourable and that any perceived lack of support may have been due in great part to the inability to distinguish, on an observational basis, between the predictions of the competing theories. We further argue that the observational situation improved little over the subsequent thirty years, but that this did not prevent Chandrasekhar's version of relativistic degeneracy, and associated theory of electron-degenerate stars, from gaining a central position within the realm of stellar structure and evolution. We briefly compare this status to that enjoyed by general relativity before 1960.  相似文献   

16.
This article intends to propose new hypotheses concerning the origin of the ‘Principe général’ of mechanics of Jean Le Rond D'Alembert expressed in its Traité de dynamique in 1743. The examination of the statics of Pierre Varignon and its inheritance suggests that D'Alembert retains, through a case of oblique collision on a hard surface, a method of decomposition and equilibrium of forces which is close to its principle. On the other hand, this principle requires a definition of the equilibrium widely spread in the 17th and 18th centuries, D'Alembert seeming then more to innovate from an epistemological point of view that on a technical one. Finally, the determination of rules of collision based at the same time on decompositions of movements at the level of the centre of mass and on appeal to a principle of relativity constitutes a know-how at the beginning of the 18th century which can be moved closer to methods developed by D'Alembert. These three aspects try then to replace the science of D'Alembert in a context by insisting on the essential role of the collisions of body and on that of the notion of equilibrium concerning the birth of its principle.  相似文献   

17.
In publications in 1914 and 1918, Einstein claimed that his new theory of gravity in some sense relativizes the rotation of a body with respect to the distant stars (a stripped-down version of Newton's rotating bucket experiment) and the acceleration of the traveler with respect to the stay-at-home in the twin paradox. What he showed was that phenomena seen as inertial effects in a space-time coordinate system in which the non-accelerating body is at rest can be seen as a combination of inertial and gravitational effects in a (suitably chosen) space-time coordinate system in which the accelerating body is at rest. Two different relativity principles play a role in these accounts: (a) the relativity of non-uniform motion, in the weak sense that the laws of physics are the same in the two space-time coordinate systems involved; (b) what Einstein in 1920 called the relativity of the gravitational field, the notion that there is a unified inertio-gravitational field that splits differently into inertial and gravitational components in different coordinate systems. I provide a detailed reconstruction of Einstein's rather sketchy accounts of the twins and the bucket and examine the role of these two relativity principles. I argue that we can hold on to (b) but that (a) is either false or trivial.  相似文献   

18.
We first see that the inertia of Newtonian mechanics is absolute and troublesome. General relativity can be viewed as Einstein's attempt to remedy, by making inertia relative, to matter—perhaps imperfectly though, as at least a couple of freedom degrees separate inertia from matter in his theory. We consider ways the relationist (for whom it is of course unwelcome) can try to overcome such underdetermination, dismissing it as physically meaningless, especially by insisting on the right transformation properties.  相似文献   

19.
Special relativity is preferable to those parts of Lorentz's classical ether theory it replaced because it shows that various phenomena that were given a dynamical explanation in Lorentz's theory are actually kinematical. In his book, Physical Relativity, Harvey Brown challenges this orthodox view. I defend it. The phenomena usually discussed in this context in the philosophical literature are length contraction and time dilation. I consider three other phenomena in the same class, each of which played a role in the early reception of special relativity in the physics literature: the Fresnel drag effect, the velocity dependence of electron mass, and the torques on a moving capacitor in the Trouton–Noble experiment. I offer historical sketches of how Lorentz's dynamical explanations of these phenomena came to be replaced by their now standard kinematical explanations. I then take up the philosophical challenge posed by the work of Harvey Brown and Oliver Pooley and clarify how those kinematical explanations work. In the process, I draw attention to the broader importance of the kinematics–dynamics distinction.  相似文献   

20.
By means of an example, special relativity and presentism, I argue for the importance of reading history of physics as a contribution to philosophy, and for the fruitfulness of this approach to doing integrated history and philosophy of science. Within philosophy of physics, presentism is widely regarded as untenable in the light of special relativity. I argue that reading Newton's Principia as a contribution to philosophy reveals a law-constitutive approach to the unity of what there is, from which an alternative approach to presentism within physics emerges. This view respects the methodological and epistemological commitments of philosophy of physics in “taking special relativity seriously”, but proposes an alternative approach to the status of spacetime (as epistemic) and to the ground of what is real (law-constitution). While this approach to presentism does not preserve all of the contemporary presentist desiderata, it offers the possibility that the spatiotemporal extent of an existing thing is less than its entire history as represented in the block universe. I argue that the approach warrants further philosophical investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号