首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The tetramer of ethylenesulfonic acid (U-9843) is a potent inhibitor of HIV-1 RT* and possesses excellent antiviral activity at nontoxic doses in HIV-1 infected lymphocytes grown in tissue culture. Kinetic studies of the HIV-1 RT-catalyzed RNA-directed DNA polymerase activity were carried out in order to determine if the inhibitor interacts with the template: primer or the deoxyribonucleotide triphosphate (dNTP) binding sites of the polymerase. Michaelis-Menten kinetics, which are based on the establishment of a rapid equilibrium between the enzyme and its substrates, proved inadequate for the analysis of the experimental data. The data were thus analyzed using steady-state Briggs-Haldane kinetics assuming that the template:primer binds to the enzyme first, followed by the binding of the dNTP and that the polymerase is a processive enzyme. Based on these assumptions, a velocity equation was derived which allows the calculation of all the specific forward and backward rate constants for the reactions occurring between the enzyme, its substrates and the inhibitor. The calculated rate constants are in agreement with this model and the results indicated that U-9843 acts as a noncompetitive inhibitor with respect to both the template:primer and dNTP binding sites. Hence, U-9843 exhibits the same binding affinity for the free enzyme as for the enzyme-substrate complexes and must inhibit the RT polymerase by interacting with a site distinct from the substrate binding sites. Thus, U-9843 appears to impair an event occurring after the formation of the enzyme-substrate complexes, which involves either an event leading up to the formation of the phosphoester bond, the formation of the ester bond itself or translocation of the enzyme relative to its template:primer following the formation of the ester bond.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Further characterization of sulfated homopolysaccharides as anti-HIV agents   总被引:2,自引:0,他引:2  
I Sugawara  W Itoh  S Kimura  S Mori  K Shimada 《Experientia》1989,45(10):996-998
  相似文献   

12.
Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of E max values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase E max values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells.  相似文献   

13.
Gram-negative bacteria can produce specific proteinaceous inhibitors to defend themselves against the lytic action of host lysozymes. So far, four different lysozyme inhibitor families have been identified. Here, we report the crystal structure of the Escherichia coli periplasmic lysozyme inhibitor of g-type lysozyme (PliG-Ec) in complex with Atlantic salmon g-type lysozyme (SalG) at a resolution of 0.95 Å, which is exceptionally high for a complex of two proteins. The structure reveals for the first time the mechanism of g-type lysozyme inhibition by the PliG family. The latter contains two specific conserved regions that are essential for its inhibitory activity. The inhibitory complex formation is based on a double ‘key-lock’ mechanism. The first key-lock element is formed by the insertion of two conserved PliG regions into the active site of the lysozyme. The second element is defined by a distinct pocket of PliG accommodating a lysozyme loop. Computational analysis indicates that this pocket represents a suitable site for small molecule binding, which opens an avenue for the development of novel antibacterial agents that suppress the inhibitory activity of PliG.  相似文献   

14.
目的 观察甘氨双唑钠(CMNa)联合时辰放疗对鼻咽癌祼鼠移植瘤的时辰放射增敏作用,并探讨其作用机制.方法 将荷瘤裸鼠随机分为3组:放疗组、放疗+CMNa组、空白对照组,每组分3HALO(光照后小时,hours after light onset)、9HALO、15HALO、21HALO四个时辰进行相应处理.测定肿瘤再生长延长时间(regrowth delay time,TGD),绘制生长曲线.用免疫组化法检测各组肿瘤标本中HIF-1α、γ-H2AX和凋亡蛋白的表达.结果 通过对各组TGD的比较.以放疗+CMNa组对肿瘤的抑制效果最好.在该组中,TGD:15HALO>21HALO>9HALO>3HALO,15HALO与3HALO的TGD比较有统计学意义 15HALO与3HALO的HIF-1α、γ-H2AX及凋亡蛋白的表达水平比较有统计学意义.结论 甘氨双唑钠联合时辰放疗对鼻咽癌裸鼠移植瘤有明显的时辰放射增敏作用,以15HALO放疗+CMNa组对肿瘤的抑制效果最佳.其机制可能与HIF-1α的表达.DNA双链损伤,凋亡有关.  相似文献   

15.
16.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that forms sessile communities, named biofilms. The non-motile forms are very difficult to eradicate and are often associated with the establishment of persistent infections, especially in patients with cystic fibrosis. The resistance of P. aeruginosa to conventional antibiotics has become a growing health concern worldwide and has prompted the search for new anti-infective agents with new modes of action. Naturally occurring antimicrobial peptides (AMPs) represent promising future template candidates. Here we report on the potent activity and membrane-perturbing effects of the amphibian AMP esculentin(1-21), on both the free-living and sessile forms of P. aeruginosa, as a possible mechanism for biofilm disruption. Furthermore, the findings that esculentin(1-21) is able to prolong survival of animals in models of sepsis and pulmonary infection indicate that this peptide can be a promising template for the generation of new antibiotic formulations to advance care of infections caused by P. aeruginosa.  相似文献   

17.
Acyl-CoA thioesterase (ACOT) activities are found in prokaryotes and in several compartments of eukaryotes where they hydrolyze a wide range of acyl-CoA substrates and thereby regulate intracellular acyl-CoA/CoA/fatty acid levels. ACOT9 is a mitochondrial ACOT with homologous genes found from bacteria to humans and in this study we have carried out an in-depth kinetic characterization of ACOT9 to determine its possible physiological function. ACOT9 showed unusual kinetic properties with activity peaks for short-, medium-, and saturated long-chain acyl-CoAs with highest V max with propionyl-CoA and (iso) butyryl-CoA while K cat/K m was highest with saturated long-chain acyl-CoAs. Further characterization of the short-chain acyl-CoA activity revealed that ACOT9 also hydrolyzes a number of short-chain acyl-CoAs and short-chain methyl-branched CoA esters that suggest a role for ACOT9 in regulation also of amino acid metabolism. In spite of markedly different K ms, ACOT9 can hydrolyze both short- and long-chain acyl-CoAs simultaneously, indicating that ACOT9 may provide a novel regulatory link between fatty acid and amino acid metabolism in mitochondria. Based on similar acyl-CoA chain-length specificities of recombinant ACOT9 and ACOT activity in mouse brown adipose tissue and kidney mitochondria, we conclude that ACOT9 is the major mitochondrial ACOT hydrolyzing saturated C2-C20-CoA in these tissues. Finally, ACOT9 activity is strongly regulated by NADH and CoA, suggesting that mitochondrial metabolic state regulates the function of ACOT9.  相似文献   

18.
Hypoxia-inducible factor-1α (HIF-1α) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Δ12,14-prostaglandin-J2 (15d-PGJ2) accumulate HIF-1α in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation. We found that 15d-PGJ2 induced an over-accumulation of HIF-1α in RCC4 cells, which lack pVHL and in HK-2 cells treated with inhibitors of the pVHL-proteasome pathway. These results indicated that pVHL-proteasome-independent mechanisms are involved, and therefore we aimed to ascertain them. We have identified a new lysosomal-dependent mechanism of HIF-1α degradation as a target for 15d-PGJ2 based on: (1) HIF-1α colocalized with the specific lysosomal marker Lamp-2a, (2) 15d-PGJ2 inhibited the activity of cathepsin B, a lysosomal protease, and (3) inhibition of lysosomal activity did not result in over-accumulation of HIF-1α in 15d-PGJ2-treated cells. Therefore, expression of HIF-1α is also modulated by lysosomal degradation.  相似文献   

19.
The effects of dopaminergic receptor inhibitors such as thiothixine (D1/D2), fluphenazine (D1/D2), trifluoperazine (D1/D2), pimozide (D2), flupenthixol (D1/D2), (+/–)-SKF 83566 (D1), and spiperone (D2) on splenic natural killer (NK) cell cytotoxic activities were assessed in vitro using mouse spleen lymphocytes or enriched NK cells. Both the activities of the splenic NK cell cytotoxicity and the effector-target cell conjugation were suppressed by thiothixine, fluphenazine, and trifluoperazine at concentrations from 2.64 to 14.78 M. In addition, the augmentation of the cytolytic activity of NK cells induced by interferon- or interleukin-2 was antagonized by pretreatment with these neuroleptic compounds. However, neither the splenic NK cell cytotoxicity nor the effector-target cell conjugation were affected by treatment with other neuroleptic compounds such as pimozide, flupenthixol, (+/–)-SKF 83566, and spiperone. Thus, it appears that neuroleptic compounds such as thiothixine, fluphenazine, and trifluoperazine may act through the mechanisms other than a dopaminergic pathway to affect the NK cell-target cell interaction.  相似文献   

20.
Protein C inhibitor (PCI) is a widely distributed, multifunctional member of the serpin family of protease inhibitors, and has been implicated in several physiological processes and disease states. Its inhibitory activity and specificity are regulated by binding to cofactors such as heparin, thrombomodulin and phospholipids, and it also appears to have non-inhibitory functions related to hormone and lipid binding. Just how the highly conserved serpin architecture can support the multiple diverse functions of PCI is a riddle best addressed by protein crystallography. Over the last few years we have solved the structure of PCI in its native, cleaved and protein-complexed states. They reveal a conserved serpin fold and general mechanism of protease inhibition, but with some unique features relating to inhibitory specificity/promiscuity, cofactor binding and hydrophobic ligand transport. Received 1 July 2008; received after revision 16 August 2008; accepted 22 August 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号