首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
Blockage of alpha beta T-cell development by TCR gamma delta transgenes   总被引:2,自引:0,他引:2  
  相似文献   

2.
Lipid modification at the N terminus of photoreceptor G-protein alpha-subunit.   总被引:10,自引:0,他引:10  
K Kokame  Y Fukada  T Yoshizawa  T Takao  Y Shimonishi 《Nature》1992,359(6397):749-752
Myristate is a fatty acid (fourteen-carbon chain with no double bonds, C14:0) linked to the amino-terminal glycine of several proteins, including alpha-subunits of heterotrimeric (alpha/beta gamma) G proteins. We report here a novel modification at the N terminus of the alpha-subunit of the photoreceptor G protein transducin, T alpha, with heterogeneous fatty acids composed of laurate (C12:0), unsaturated C14:2 and C14:1 fatty acids, and a small amount (approximately 5%) of myristate. Both the GTPase activity of T alpha/T beta gamma and the T beta gamma-dependent ADP-ribosylation of T alpha catalysed by pertussis toxin were inhibited by the lauroylated and myristoylated N-terminal peptide of T alpha. The myristoylated peptide gave 50% inhibition at a 3.5 to approximately 4.5-fold lower concentration than the lauroylated peptide in each assay, indicating that the strength of the interaction between T alpha and T beta gamma is altered by heterogeneous fatty acids linked to T alpha. This suggests that a looser subunit interaction in transducin which is due to an abundance of N-linked fatty acids other than myristate would favour the rapid turnover and catalysis essential for the visual excitation in photoreceptor cells.  相似文献   

3.
The nicotinic acetylcholine receptor (AChR) from fish electric organ has a subunit structure of alpha 2 beta gamma delta, and this is thought to be also the case for the mammalian skeletal muscle AChR. By cloning and sequencing the complementary or genomic DNAs, we have previously elucidated the primary structures of all four subunits of the Torpedo californica electroplax and calf muscle AChR and of the alpha- and gamma-subunits of the human muscle AChR; the primary structures of the gamma-subunit of the T. californica AChR and the alpha-subunit of the Torpedo marmorata AChR have also been deduced elsewhere. We have now cloned DNA complementary to the calf muscle messenger RNA encoding a novel polypeptide (the epsilon-subunit) whose deduced amino-acid sequence has features characteristic of the AChR subunits and which shows higher sequence homology with the gamma-subunit than with the other subunits. cDNA expression studies indicate that the calf epsilon-subunit, as well as the calf gamma-subunit, can replace the Torpedo gamma-subunit to form the functional receptor in combination with the Torpedo alpha-, beta- and delta-subunits.  相似文献   

4.
C Kleuss  H Scherübl  J Hescheler  G Schultz  B Wittig 《Nature》1992,358(6385):424-426
Regulatory GTP-binding proteins (G proteins) are membrane-attached heterotrimers (alpha, beta, gamma) that mediate cellular responses to a wide variety of extracellular stimuli. They undergo a cycle of guanine-nucleotide exchange and GTP hydrolysis, during which they dissociate into alpha-subunit and beta gamma complex. The roles of G-protein alpha-subunits in these processes and for the specificity of signal transduction are largely established; the beta- and gamma-subunits are essential for receptor-induced G-protein activation and seem to be less diverse and less specific. Although the complementary DNAs for several beta-subunits have been cloned, isolated subunits have only been studied as beta gamma complexes. Functional differences have been ascribed to the gamma-subunit on the basis of extensive sequence similarity among beta-subunits and apparent heterogeneity in gamma-subunit sequences. Beta gamma complexes can interact directly or indirectly with different effectors. They seem to be interchangeable in their interaction with pertussis toxin-sensitive alpha-subunits, so we tested this by microinjecting antisense oligonucleotides into nuclei of a rat pituitary cell line to suppress the synthesis of individual beta-subunits selectively. Here we show that two out of four subtypes of beta-subunits tested (beta 1 and beta 3) are selectively involved in the signal transduction cascades from muscarinic M4 (ref. 4) and somatostatin receptors, respectively, to voltage-dependent Ca2+ channels.  相似文献   

5.
The dihydropyridine (DHP) receptor purified from skeletal muscle comprises five protein subunits (alpha 1, alpha 2, beta, gamma and delta) and produces Ca2+ currents that are blocked by DHPs. Cloning of the alpha 1- and alpha 2-subunits, the former affinity-labelled by DHP, has shown that the alpha 1-subunit is expressed in skeletal muscle alone, whereas the alpha 2- and delta- subunits are also expressed in other tissues. Although the transient expression of the alpha 1-subunit in myoblasts from dysgenic mice (but not in oocytes) has been demonstrated, the use of these expression systems to determine the function of the alpha 1- subunit is complicated by the presence of endogenous Ca2+ currents, which may reflect the constitutive expression of proteins similar to the alpha 2-, beta-, gamma- and/or delta-subunits. We therefore selected a cell line which has no Ca2+ currents or alpha 2- subunit, and probably no delta-subunit for stable transformation with complementary DNA of the alpha 1- subunit. The transformed cells express DHP-sensitive, voltage-gated Ca2+ channels, indicating that the minimum structure of these channels is at most an alpha 1 beta gamma complex and possibly an alpha 1- subunit alone.  相似文献   

6.
7.
A Katz  D Wu  M I Simon 《Nature》1992,360(6405):686-689
The activation of heterotrimeric G proteins results in the exchange of GDP bound to the alpha-subunit for GTP and the subsequent dissociation of a complex of the beta- and gamma-subunits (G beta gamma). The alpha-subunits of different G proteins interact with a variety of effectors, but less is known about the function of the free G beta gamma complex. G beta gamma has been implicated in the activation of a cardiac potassium channel, a retinal phospholipase A2 (ref. 9) and a specific receptor kinase, and in vitro reconstitution experiments indicate that the G beta gamma complex can act with G alpha subunit to modulate the activity of different isoforms of adenylyl cyclase. Of two phospholipase activities that can be separated in extracts of HL-60 cells, purified G beta gamma is found to activate one of them. Here we report that in co-transfection assays G beta gamma subunits specifically activate the beta 2 and not the beta 1 isoform of phospholipase, which acts on phosphatidylinositol. We use transfection assays to show also that receptor-mediated release of G beta gamma from G proteins that are sensitive to pertussis toxin can result in activation of the phospholipase. This effect may be the basis of the pertussis-toxin-sensitive phospholipase C activation seen in some cell systems (reviewed in refs 13 and 14).  相似文献   

8.
A mutation that prevents GTP-dependent activation of the alpha chain of Gs   总被引:18,自引:0,他引:18  
Membrane-bound G proteins carry information from receptors on the outside of cells to effector proteins inside cells. The alpha subunits of these heterotrimeric proteins bind and hydrolyse GTP and control the specificity of interactions with receptor and effector elements. Signalling by G proteins involves a cycle in which the inactive alpha beta gamma-GDP complex dissociates to produce alpha*-GTP, which is capable of activating the effector enzyme or ion channel; the alpha*-GTP complex hydrolyses bound GTP and reassociates with beta gamma to form the inactive complex. We have characterized a mutation that interrupts this GTP-driven cycle in alpha s, the alpha-chain of Gs, the G protein that stimulates adenylyl cyclase. The mutation converts a glycine to an alanine residue in the presumed GDP-binding domain of alpha s. The location and biochemical consequences of this mutation suggest a common mechanism by which binding of GTP or ATP may induce changes in the conformation of a number of nucleoside triphosphate binding proteins.  相似文献   

9.
Agonist-bound receptors activate heterotrimeric (alpha beta gamma) G proteins by catalysing replacement by GTP of GDP bound to the alpha subunit, resulting in dissociation of alpha-GTP from the beta gamma subunits. In most cases, alpha-GTP carries the signal to effectors, as in hormonal stimulation and inhibition of adenylyl cyclase by alpha s and alpha i respectively. By contrast, genetic evidence in yeast and studies in mammalian cells suggest that beta gamma subunits of G proteins may also regulate effector pathways. Indeed, of the four recombinant mammalian adenylyl cyclases available for study, two, adenylyl cyclases II and IV, are stimulated by beta gamma. This effect of beta gamma requires costimulation by alpha s-GTP. This conditional pattern of effector responsiveness led to the prediction that receptors coupled to many G proteins will mediate elevation of cellular cyclic AMP, provided that Gs is also active. We now confirm this prediction. Coexpression of mutationally active alpha s with adenylyl cyclase II converted agonists that act through 'inhibitory' receptors (coupled to Gi) into stimulators of cAMP synthesis. Experiments using pertussis toxin and a putative scavenger of beta gamma, the alpha subunit of transducin, suggest that beta gamma subunits of the Gi proteins mediated this stimulation. These findings assign a new signalling function to beta gamma subunits of Gi proteins, the conditional stimulation of cAMP synthesis by adenylyl cyclase II.  相似文献   

10.
During their intrathymic differentiation, T lymphocytes expressing alpha beta T-cell receptors (TCR) are negatively and positively selected. This selection contributes to the establishment of self-tolerance and ensures that mature CD4+ and CD8+ cell populations are restricted by the self major histocompatibility complex. Little is known, however, about gamma delta T-cell development. To investigate whether selection operates in the establishment of the gamma delta T-cell class, we have generated transgenic mice using gamma- and delta-transgenes encoding a TCR that is specific for a product of a gene in the TL-region of the TLb haplotype. Similar numbers of thymocytes expressing the transgenic TCR were generated in mice of TLb and TLd haplotypes. But gamma delta thymocytes from TLb and TLd transgenic mice differed in cell size, TCR density and in their capacity to respond to TLb stimulator cells or interleukin-2 (IL-2). In contrast to gamma delta T cells from TLd transgenic mice, gamma delta T cells from TLb transgenic mice did not produce IL-2 and did not proliferate in response to TLb stimulator cells, but they did proliferate in the presence of exogenous IL-2. These results indicate that functional inactivation of self-antigen-specific T cells could contribute to the establishment of self-tolerance to thymic determinants.  相似文献   

11.
J S Heilig  S Tonegawa 《Nature》1986,322(6082):836-840
The search for the genes encoding the T-cell receptor alpha and chains revealed a third gene, T gamma (ref. 1), which shares with t T alpha (refs 2-7) and T beta (refs 8-15) genes a number of structure features, including somatic rearrangement during T-cell development. T gamma gene expression appears to be unnecessary in son mature T cells and is at its greatest in fetal thymocytes encouraging speculation that T gamma has a role in T-cell development and may be involved in the recognition of polymorphic major histocompatibility complex (MHC) products during thymic education. One argument against the participation of T gamma in such a process has been its apparently limited diversity, due to the small number of gene segments available for rearrangement. We here describe the identification of additional T gamma V-gene segments and demonstrate that they can be rearranged to previously identified J- and C-gene segments and are expressed in fetal thymocytes. In addition we describe a variety of patterns of T gamma mRNA processing which may be significant for T gamma gene regulation.  相似文献   

12.
A Winoto  S Mjolsness  L Hood 《Nature》1985,316(6031):832-836
The vertebrate immune system uses two kinds of antigen-specific receptors, the immunoglobulin molecules of B cells and the antigen receptors of T cells. T-cell receptors are formed by a combination of two different polypeptide chains, alpha and beta (refs 1-3). Three related gene families are expressed in T cells, those encoding the T-cell receptor, alpha and beta, and a third, gamma (refs 4-6), whose function is unknown. Each of these polypeptide chains can be divided into variable (V) and constant (C) regions. The V beta regions are encoded by V beta, diversity (D beta) and joining (J beta) gene segments that rearrange in the differentiating T cell to generate V beta genes. The V gamma regions are encoded by V gamma, J gamma and, possibly, D gamma gene segments. Studies of alpha complementary DNA clones suggest that alpha-polypeptides have V alpha and C alpha regions and are encoded by V alpha and J alpha gene segments and a C alpha gene. Elsewhere in this issue we demonstrate that 18 of 19 J alpha sequences examined are distinct, indicating that the J alpha gene segment repertoire is much larger than those of the immunoglobulin (4-5) or beta (14) gene families. Here we report the germline structures of one V alpha and six J alpha mouse gene segments and demonstrate that the structures of the V alpha and J alpha gene segments and the alpha-recognition sequences for DNA rearrangement are similar to those of their immunoglobulin and beta-chain counterparts. We also show that the J alpha gene-segment organization is strikingly different from that of the other immunoglobulin and rearranging T-cell gene families. Eighteen J alpha gene segments map over 60 kilobases (kb) of DNA 5' to the C alpha gene.  相似文献   

13.
Itoh H  Takahashi A  Adachi K  Noji H  Yasuda R  Yoshida M  Kinosita K 《Nature》2004,427(6973):465-468
ATP, the main biological energy currency, is synthesized from ADP and inorganic phosphate by ATP synthase in an energy-requiring reaction. The F1 portion of ATP synthase, also known as F1-ATPase, functions as a rotary molecular motor: in vitro its gamma-subunit rotates against the surrounding alpha3beta3 subunits, hydrolysing ATP in three separate catalytic sites on the beta-subunits. It is widely believed that reverse rotation of the gamma-subunit, driven by proton flow through the associated F(o) portion of ATP synthase, leads to ATP synthesis in biological systems. Here we present direct evidence for the chemical synthesis of ATP driven by mechanical energy. We attached a magnetic bead to the gamma-subunit of isolated F1 on a glass surface, and rotated the bead using electrical magnets. Rotation in the appropriate direction resulted in the appearance of ATP in the medium as detected by the luciferase-luciferin reaction. This shows that a vectorial force (torque) working at one particular point on a protein machine can influence a chemical reaction occurring in physically remote catalytic sites, driving the reaction far from equilibrium.  相似文献   

14.
Identification and sequence of a fourth human T cell antigen receptor chain   总被引:2,自引:0,他引:2  
  相似文献   

15.
Type III receptors for IgG (Fc gamma RII; ref. 1), high-affinity IgE receptors (Fc epsilon RI; ref. 2), as well as the T- and B-cell antigen receptors, consist of multiple components with specialized ligand-binding and signal transduction functions. Fc gamma RII alpha (ligand-binding) and gamma (signal-transducing) subunits are expressed in macrophages, a cell type involved in the uptake of antigen, its processing and the presentation of the resulting peptides to major histocompatibility complex class II-restricted T lymphocytes. Here we show that murine Fc gamma RIII, transfected into Fc gamma R-negative antigen-presenting B-lymphoma cells, mediate rapid ligand internalization and strongly increase the efficiency of antigen presentation when antigen is complexed to IgG. Efficient internalization and antigen presentation via Fc gamma RIII did not require the cytoplasmic domain of the ligand-binding alpha-chain, but did require the gamma-subunit. Using chimaeric molecules, we show that gamma-chain contains a signal for receptor internalization and that the mutation of either of the two tyrosine residues present in its cytoplasmic domain prevents efficient internalization and antigen presentation of immune complexes. Thus, associated chains and their tyrosine-containing motif are not exclusively involved in cell activation, but also determine multimeric receptor internalization.  相似文献   

16.
Structural homology of Torpedo californica acetylcholine receptor subunits   总被引:58,自引:0,他引:58  
The nicotinic acetylcholine receptor (AChR) from the electroplax of the ray Torpedo californica is composed of five subunits present in a molar stoichiometry of alpha 2 beta gamma delta (refs 1-3) and contains both the binding site for the neurotransmitter and the cation gating unit (reviewed in refs 4-6). We have recently elucidated the complete primary structures of the alpha-, beta- and delta-subunit precursors of the T. californica AChR by cloning and sequencing cDNAs for these polypeptides. Here, we report the whole primary structure of the gamma-subunit precursor of the AChR deduced from the nucleotide sequence of the cloned cDNA. Comparison of the amino acid sequences of the four subunits reveals marked homology among them. The close resemblance among the hydrophilicity profiles and predicted secondary structures of all the subunits suggests that these polypeptides are oriented in a pseudosymmetric fashion across the membrane. Each subunit contains four putative transmembrane segments that may be involved in the ionic channel. The transmembrane topology of the subunit molecules has also been inferred.  相似文献   

17.
C J Rust  F Verreck  H Vietor  F Koning 《Nature》1990,346(6284):572-574
T cells bearing the alpha beta receptor can specifically react with target cells coated with staphylococcal enterotoxin and expressing major histocompatibility complex class II molecules; these responses depend on which variable region (V) of the receptor's beta-subunit is used. We have now examined whether a similar situation exists for human T cells bearing the gamma delta receptor. We found that reactivity to staphylococcal enterotoxin A is strictly dependent on the presence of the V gamma 9 variable region in the gamma delta T-cell receptor (TCR). These cytotoxic responses required the expression of HLA class II molecules by the target cell and could be inhibited by anti-gamma delta TCR and by anti-HLA-class-II monoclonal antibodies. In contrast to alpha beta TCR+ cell clones, no proliferative response of V gamma 9+ T-cell clones towards stimulator cells coated with enterotoxin A was observed in vitro. These results indicate that the gamma delta TCR repertoire might be influenced by enterotoxin A produced during staphylococcal infections in vivo. This could provide a molecular basis for the observation that V gamma 9+ T cells form the large majority of peripheral gamma delta TCR+ cells but only a small proportion of thymic gamma delta TCR+ cells.  相似文献   

18.
Subtractive complementary DNA cloning combined with partial protein sequencing has allowed identification of the genes encoding the alpha and beta subunits of T-cell receptors. The subtractive cDNA library prepared from the cytotoxic T lymphocyte (Tc) clone 2C has been found to contain a third type of clone encoding the gamma chain. The gamma gene shares several features with the alpha and beta genes: (1) assembly from gene segments resembling immunoglobulin V, J and C (respectively variable, joining and constant region) DNA segments; (2) rearrangement and expression in T cells and not in B cells; (3) sequences reminiscent of transmembrane and intracytoplasmic regions of integral membrane proteins; (4) a cysteine residue at the position expected for an interchain disulphide bond. The alpha and beta genes are expressed at equivalent levels in both Tc cells and helper T cells (TH). The gamma gene, obtained from 2C, has been found to be expressed in all Tc cells studied. Here we present evidence that strongly suggests that TH cells do not require gamma gene expression.  相似文献   

19.
Lymphocytes are most reliably subdivided on the basis of their receptors for antigen at the cell surface. Three subtypes of lymphocytes are well defined: B cells that bear surface immunoglobulin and make antibody, CD4+T cells with CD3 alpha beta receptors specific for antigen associated with class II major histocompatibility complex molecules, and CD8+T cells with CD3 alpha beta receptors specific for antigen associated with class I MHC molecules. These T cells are responsible for known forms of cell-mediated immunity. The discovery of a third rearranging T-cell specific gene called gamma (refs 1 and 2) has revealed the presence of a new class of T cells bearing a new receptor type, CD3 gamma delta (refs 3-7). To date, neither the function nor the specificity of cells bearing this receptor has been determined. Because gamma delta T cells are the main lymphocyte of epidermis, it was proposed that such cells could be important in surveillance of all epithelia. We have isolated intraepithelial lymphocytes from murine small intestine, and shown that they predominantly or exclusively express CD3 gamma delta receptors. Unlike the epidermal lymphocytes, these cells also express CD8, and they use a different V lambda gene to form their receptor. This strongly suggests that gamma delta T cells home in a very specific manner to epithelia, where they presumably mediate their function.  相似文献   

20.
D Kim  D L Lewis  L Graziadei  E J Neer  D Bar-Sagi  D E Clapham 《Nature》1989,337(6207):557-560
Muscarinic receptors of cardiac pacemaker and atrial cells are linked to a potassium channel (IK.ACh) by a pertussis toxin-sensitive GTP-binding protein. The dissociation of G-proteins leads to the generation of two potential transducing elements, alpha-GTP and beta gamma. IK.ACh is activated by G-protein alpha- and beta gamma-subunits applied to the intracellular surface of inside-out patches of membrane. beta gamma has been shown to activate the membrane-bound enzyme phospholipase A2 in retinal rods. Arachidonic acid, which is produced from the action of phospholipase A2 on phospholipids, is metabolized to compounds which may act as second messengers regulating ion channels in Aplysia. Muscarinic receptor activation leads to the generation of arachidonic acid in some cell lines. We therefore tested the hypothesis that beta gamma activates IK.ACh by stimulation of phospholipase A2. When patches were first incubated with antibody that blocks phospholipase A2 activity, or with the lipoxygenase inhibitor, nordihydroguaiaretic acid, beta gamma failed to activate IK.ACh. Arachidonic acid and several of its metabolites derived from the 5-lipoxygenase pathway, activated the channel. Blockade of the cyclooxygenase pathway did not inhibit arachidonic acid-induced channel activation. We conclude that the beta gamma-subunit of G-proteins activates IK.ACh by stimulating the production of lipoxygenase-derived second messengers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号