首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
N Dale  O P Ottersen  A Roberts  J Storm-Mathisen 《Nature》1986,324(6094):255-257
Glycine and gamma-aminobutyric acid (GABA) are inhibitory transmitters of major importance. Whereas neurones using GABA as the transmitter can be visualized by immunocytochemical methods for glutamate decarboxylase (GAD) or GABA, no comparable techniques have been available for the selective visualization of glycinergic neurones. We have now produced polyclonal antibodies which specifically recognize glycine in glutaraldehyde-fixed tissue. We used these antibodies to investigate the distribution of glycine in the simple central nervous system (CNS) of the Xenopus embryo, which contains an anatomically and physiologically defined class of reciprocal inhibitory interneurones, the commissural interneurones. These interneurones have an important role in the generation of the swimming motor pattern and are thought to be glycinergic. The glycine antibodies specifically stain these interneurones, revealing their distribution and number in the embryo CNS. This is the first demonstration of the selective localization of glycine-like immunoreactivity in a putative glycinergic class of neurone that has been characterized physiologically, pharmacologically and anatomically.  相似文献   

2.
Glutamate stimulates inositol phosphate formation in striatal neurones   总被引:11,自引:0,他引:11  
F Sladeczek  J P Pin  M Récasens  J Bockaert  S Weiss 《Nature》1985,317(6039):717-719
The major excitatory amino acids, glutamate (Glu) and aspartate (Asp), are thought to act at three receptor subtypes in the mammalian central nervous system (CNS). These are termed quisqualate (QA), N-methyl-D-aspartate (NMDA) and kainate (KA) receptors according to the specific agonist properties of these compounds revealed by electrophysiological studies. Although Glu has been shown to stimulate cyclic GMP formation in brain slices, direct regulation of second messenger systems (cyclic AMP, Ca2+ or inositol phosphates) subsequent to activation of excitatory amino-acid receptors, has not been extensively studied. Here we demonstrate that in striatal neurones, excitatory amino acids, but not inhibitory or non-neuroactive amino acids, induce a three- to fourfold increase in inositol mono-, di- and triphosphate (IP, IP, IP) formation with the relative potency QA greater than Glu greater than NMDA, KA. The Glu-evoked formation of inositol phosphates appears to result principally from actions at QA as well as NMDA receptors on striatal neurones. Our results suggest that excitatory amino acids stimulate inositol phosphate formation directly, rather than indirectly by the evoked release and subsequent actions of adenosine or acetylcholine.  相似文献   

3.
G G Holz  S G Rane  K Dunlap 《Nature》1986,319(6055):670-672
The modulation of voltage-dependent calcium channels by hormones and neurotransmitters has important implications for the control of many Ca2+-dependent cellular functions including exocytosis and contractility. We made use of electrophysiological techniques, including whole-cell patch-clamp recordings from dorsal root ganglion (DRG) neurones, to demonstrate a role for GTP-binding proteins (G-proteins) as signal transducers in the noradrenaline- and gamma-aminobutyric acid (GABA)-induced inhibition of voltage-dependent calcium channels. This action of the transmitters was blocked by: (1) preincubation of the cells with pertussis toxin (a bacterial exotoxin catalysing ADP-ribosylation of G-proteins); or (2) intracellular administration of guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S), a non-hydrolysable analogue of GDP that competitively inhibits the binding of GTP to G-proteins. Our findings provide the first direct demonstration of the G-protein-mediated inhibition of voltage-dependent calcium channels by neurotransmitters. This mode of transmitter action may explain the ability of noradrenaline and GABA to presynaptically inhibit Ca2+-dependent neurosecretion from DRG sensory neurones.  相似文献   

4.
M M Slaughter  R F Miller 《Nature》1983,303(5917):537-538
The bipolar cells of the vertebrate retina are the principal neuronal elements which transmit photoreceptor activity from the outer to the inner retina. An important function of the bipolars is to segregate photoreceptor input into independent ON and OFF channels which are subserved, respectively, by the depolarizing and hyperpolarizing bipolar subtypes. Ultrastructural and physiological observations suggest that chemical neurotransmission is the predominant means of bipolar input to the inner retina. Both ON and OFF bipolars apparently release excitatory transmitters. Histological studies with cytotoxic agents and physiological studies indicate that third-order neurones have excitatory amino acid receptors. In ON-OFF amacrine and ganglion cells, which receive input from both bipolars, ON and OFF excitation have a similar ionic basis, suggesting that the same transmitter may be released by both types of bipolars. We have now found that (+/-)cis-2,3-piperidine dicarboxylic acid (PDA), a new excitatory amino acid antagonist, blocks bipolar input to the inner retina and thus suggests that an excitatory amino acid is a bipolar cell transmitter.  相似文献   

5.
GABA may be a neurotransmitter in the vertebrate peripheral nervous system   总被引:27,自引:0,他引:27  
gamma-Aminobutyric acid (GABA) is an inhibitory neurotransmitter in the peripheral nervous system of certain invertebrates and is thought to be a major transmitter in the vertebrate central nervous system. In this report we present evidence that GABA may also be a neurotransmitter in the vertebrate peripheral autonomic nervous system. We have used light and electron microscopic autoradiography to analyse high-affinity uptake of 3H-GABA into the myenteric plexus of the guinea pig taenia coli, both in situ and in a tissue culture preparation. In the isolated myenteric plexus, we have measured the specific activity of glutamic acid decarboxylase (GAD; EC 4.1.1.15), the enzyme responsible for conversion of glutamic acid to GABA in GABAergic neurones, and assessed the ability of this tissue to accumulate 3H-GABA newly synthesised from 3H-glutamic acid. Furthermore, we have measured the levels of endogenous GABA in strips of taenia coli containing the myenteric plexus.  相似文献   

6.
ATP excites a subpopulation of rat dorsal horn neurones   总被引:11,自引:0,他引:11  
C E Jahr  T M Jessell 《Nature》1983,304(5928):730-733
The peripheral receptive properties and central projections of different classes of dorsal root ganglion neurones are well characterized. Much less is known about the transmitters used by these neurones. Excitatory amino acids have been proposed as sensory transmitters but the sensitivity of virtually all central neurones to those compounds has made it difficult to assess their precise role in sensory transmission. Several neuropeptides have been localized within discrete subclasses of primary sensory neurones that project to the superficial dorsal horn of the spinal cord and may be afferent transmitters. However, only about one-third of spinal sensory neurones have been shown to contain neuropeptides. We have recently described the presence of a 5'-nucleotide hydrolysing acid phosphatase in a separate subpopulation of dorsal root ganglion neurones that project to the superficial dorsal horn. This enzyme also appears in certain autonomic and endocrine cells that contain high concentrations of releasable nucleotides in their storage granules. It is possible that the presence of this enzyme in sensory neurones is also associated with a releasable pool of nucleotides. Holton and Holton have provided evidence that ATP is released from the peripheral terminals of unmyelinated sensory fibres and have suggested that release of ATP might also occur from central sensory terminals. To investigate the possibility that nucleotides act as central sensory transmitters we have examined their actions on rat dorsal horn and dorsal root ganglion neurones maintained in dissociated cell culture. We report here a selective and potent excitation of subpopulations of both neuronal types by ATP.  相似文献   

7.
M W Hankins  K H Ruddock 《Nature》1984,308(5957):360-362
Kainic (KA) and quisqualic (QA) acids have a potent depolarizing action on a variety of neurones of the central nervous system, including retinal horizontal cells. We now report the novel finding that at low concentrations (1-3 microM), these 'excitatory' amino acids hyperpolarize horizontal cells of the fish retina. We show that the hyperpolarizing effects of both KA and QA are reversed by the gamma-aminobutyric acid (GABA) antagonist bicuculline, whereas a second GABA antagonist, picrotoxin, reverses the effects of KA, but not of QA. Neither GABA antagonist influences horizontal cell depolarization by 50 microM KA or 50 microM QA, thus the excitatory (depolarizing and inhibitory (hyperpolarizing) effects of the amino acids involve independent mechanisms. We provide evidence that the hyperpolarizing effects are not mediated by the dopaminergic pathways associated with retinal horizontal cells.  相似文献   

8.
R W Baughman  C D Gilbert 《Nature》1980,287(5785):848-850
Earlier work has suggested that aspartate, glutamate and gamma-aminobutyric acid (GABA) act as transmitters in the cerebral cortex. There is reasonable evidence for the identity of the cell population responsible for GABA release but until now there has been little evidence concerning the sources for release of aspartate and glutamate. Here we have used two approaches to identify possible neurotransmitters used by cells in the visual cortex: measurement of the efflux of endogenous compounds in conditions of synaptic release and localization of these compounds to particular cell classes using neurotransmitter-specific histochemical techniques. Our results suggest that the acidic amino acids aspartate and glutamate may be cortical neurotransmitters, as shown by calcium-dependent release from endogenous stores and by uptake specific to pyramidal cells in layer 6 of the cortex. These substances may therefore have a role in the function of layer 6 cells, which are responsible for the recurrent projection from the cortex to the lateral geniculate nucleus and for the projection within the cortex from layer 6 to layer 4.  相似文献   

9.
An opiate system in the goldfish retina   总被引:5,自引:0,他引:5  
M B Djamgoz  W K Stell  C A Chin  D M Lam 《Nature》1981,292(5824):620-623
Recently, in addition to conventional neurotransmitters such as acetylcholine, dopamine, glycine and gamma-aminobutyric acid (GABA), putative neuroactive peptide transmitters have been localized to specific retinal amacrine cells. In particular, opiate receptors 2,3, assayable enkephalin immunoreactivity and enkephalin-immunoreactive neurones 1,5 have been described in avian and mammalian retinae. However, little physiological evidence has been obtained for the involvement of neuropeptides in retinal function. Here we report that exogenous opiates affect both the release of GABA from GABAergic amacrine cells and the firing patterns of ganglion cells in the goldfish retina. Our results show that the output of the retina is modulated by an opiate system whose neural organization and pharmacological properties resemble those described elsewhere in the vertebrate central nervous system.  相似文献   

10.
GABA affects the release of gastrin and somatostatin from rat antral mucosa   总被引:2,自引:0,他引:2  
R F Harty  P A Franklin 《Nature》1983,303(5918):623-624
gamma-Aminobutyric acid (GABA) is regarded as the major inhibitory neurotransmitter in the central nervous system of vertebrates. GABA exerts its inhibitory actions by interacting with specific receptors on pre- and postsynaptic membranes and has been shown to inhibit somatostatin release from hypothalamic neurones in vitro. Concepts of innervation of the gastrointestinal tract have been expanded by recent studies which suggest that GABAergic neurones are not confined solely to the central nervous system but may also exist in the vertebrate peripheral autonomic nervous system. Jessen and coworkers have demonstrated the presence, synthesis and uptake of GABA by the myenteric plexus of the guinea pig taenia coli, and have documented the presence of glutamic acid decarboxylase (GAD) in isolated myenteric plexus. This enzyme is responsible for the conversion of glutamic acid to GABA in GABAergic neurones. The possibility that GABA may have a role in neurotransmission or neuromodulation in the enteric nervous system of the vertebrate gut has been suggested by several investigators. Furthermore, GABA receptors have been demonstrated on elements of the enteric nervous system. The effects of GABA on gastrointestinal endocrine cell function have not been examined. We report here the effects of GABA on gastrin and somatostatin release from isolated rat antral mucosa in short-term in vitro incubations.  相似文献   

11.
P Davies  R Katzman  R D Terry 《Nature》1980,288(5788):279-280
Both Alzheimer's disease and senile dementia of the Alzheimer type (AD/SDAT) are progressive dementias characterized neuropathologically by the presence in the cerebral cortex of numerous neurofibrillary tangles and neuritic plaques. We use the abbreviation AD/SDAT to denote all such cases, irrespective of age of onset. Studies of neurotransmitter-related parameters in autopsied brain tissues from patients with AD/SDAT have, to date, been confined to five putative transmitter systems. Acetycholine-releasing neurones seem to be most markedly and consistently affected, as judged by the extensive reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities that have been reported. Despite numerous studies, there is no consistent evidence for the involvement of neurones releasing dopamine, noradrenaline, serotonin, or gamma-aminobutyric acid in AD/SDAT, nor for loss of muscarinic cholinergic receptors. Thus, the involvement of cholinergic neurones in AD/SDAT seems to be specific. However, the possible involvement of neurones using other chemicals as transmitters has yet to be explored. The recent recognition of the existence of so-called 'peptidergic neurones' in the mammalian brain (for review see ref. 8) and the availability of radioimmunoassay (RIA) techniques for studying these peptides, have led us to begin a systematic investigation of neuropeptides in autopsied brain tissue from cases of AD/SDAT, and from neurologically normal individuals. We report here results obtained with a RIA for somatostatin, showing that somatostatin-like immunoreactivity in the cerebral cortex is reduced in tissue from AD/SDAT patients.  相似文献   

12.
通过观察脑递质性氨基酸的变化,进一步探索运动性疲劳的中枢机制,30只雄性SD大鼠进行了一次性力竭跑台运动,用高效液相色谱法检测了运动前后及恢复期:0.5h、1h、3h和24h大鼠脑皮质运动区Glu、Asp、GABA、Gly含量,结果发现:力竭运动后即刻Glu含量有所下降,GABA含量显著性上升至最高点;Gly含量在力竭运动后即刻、恢复0.5、1h均显著性高于安静值,恢复期0.5h达到最高点,同GABA含量变化相比具有时相差异性;Glu/GABA比值在恢复期有所增高,而Glu+Asp/GABA+Gly比值始终低于安静值。提示:大鼠脑皮质运动区Glu含量下降和GABA含量增高与运动中枢抑制过程有关;Gly对中枢机能的调控存在复杂的机制;观察大鼠脑中Glu+Asp/GABA+Gly比值,反映运动性疲劳时脑的机能状态,较Glu/GABA比值更有意义。  相似文献   

13.
O P Hamill  J Bormann  B Sakmann 《Nature》1983,305(5937):805-808
In the mammalian central nervous system, glycine and gamma-aminobutyric acid (GABA) bind to specific and distinct receptors and cause an increase in membrane conductance to CI- (refs 5-7). Neurones in various regions of the nervous system show differential sensitivity to glycine and GABA; thus GABA and glycine receptors are spatially distinct from one another. However, on the basis of desensitization experiments on spinal cord neurones, it was suggested that the receptors for glycine and GABA may share the same CI- channel. We now report that in small membrane patches, isolated from the soma of spinal neurones, both receptor channels display several (multiple) conductance states. Two of the states are common to both receptor channels. However, the most frequently observed 'main conductance states' of the GABA and glycine receptor channels are different. Both channels display the same anion selectivity. We propose that one class of multistate CI- channel is coupled to either GABA or glycine receptors. The main conductance state adopted by this channel is determined by the receptor to which it is coupled.  相似文献   

14.
Selective antagonists of benzodiazepines   总被引:56,自引:0,他引:56  
Benzodiazepines produce most, if not all, of their numerous effects on the central nervous system (CNS) primarily by increasing the function of those chemical synapses that use gamma-amino butyric acid (GABA) as transmitter. This specific enhancing effect on GABAergic synaptic inhibition is initiated by the interaction of benzodiazepines with membrane proteins of certain central neurones, to which drugs of this chemical class bind with high affinity and specificity. The molecular processes triggered by the interaction of these drugs with central benzodiazepine receptors, and which result in facilitation of GABAergic transmission, are still incompletely understood. Theoretically, benzodiazepines could mimic the effect of hypothetical endogenous ligands for the benzodiazepine receptors, although there is no convincing evidence for their existence; in vitro studies indicate that benzodiazepines might compete with a modulatory peptide which is present in the supramolecular assembly formed by GABA receptor, chloride ionophore and benzodiazepine receptor and which reduces the affinity of the GABA receptor for its physiological ligand. The mechanisms of action of benzodiazepines at the molecular level are likely to be better understood following our recent discovery of benzodiazepine derivatives, whose unique pharmacological activity is to prevent or abolish in a highly selective manner at the receptor level all the characteristic centrally mediated effects of active benzodiazepines. Here, we describe the main properties of a representative of this novel class of specific benzodiazepine antagonists.  相似文献   

15.
S H Hendry  E G Jones 《Nature》1986,320(6064):750-753
The primary visual cortex (area 17) of the Old World monkey is divided into alternating right- and left-eye dominance columns that are highly modifiable by visual experience during a critical period in development but display little morphological or physiological plasticity during adult life. However, changes in immunocytochemical staining for a calcium/calmodulin-dependent protein kinase occur in visual cortical neurones of adult monkeys after brief monocular deprivation and concentrations of putative neurotransmitters or their related enzymes can be altered with changes in neuronal activity in other systems. We therefore examined the effects of monocular deprivation on the immunocytochemical staining for gamma-aminobutyric acid (GABA) and its synthetic enzyme, glutamic acid decarboxylase (GAD), in adult monkey area 17. The staining for GABA and GAD in neuronal somata and terminals was markedly reduced within ocular dominance columns associated with a removed or a visually deprived eye, suggesting that the GABA concentration in cortical neurones may depend on their levels of activity. Thus area 17 of adult monkeys may retain a greater degree of plasticity than previously recognized and sensory experience can profoundly affect transmitter levels, in the cortex, apparently by regulating levels of a synthetic enzyme.  相似文献   

16.
目的研究兰州鲇(Silurus lanzhouensis)肌肉中常规营养成分和不同季节中肌肉水解氨基酸的组成和含量。方法采用氨基酸自动分析仪测定肌肉中水解氨基酸。结果兰州鲇肌肉中含有18种氨基酸,组成和含量顺序未呈现出季节性变化特点;蛋氨酸、异亮氨酸、亮氨酸、天冬氨酸、丙氨酸这5种氨基酸的含量及氨基酸总量,均随季节的推移呈上升趋势,但在3个季节中仅有秋季显著高于春季(P<0.05);苏氨酸、丝氨酸和谷氨酸等9种氨基酸的含量和必需氨基酸总量等虽有季节性上升趋势,但在3个季节间均无显著差异(P>0.05);胱氨酸、组氨酸和精氨酸等4种氨基酸含量未呈现出季节性变化。结论兰州鲇是一种蛋白质含量较高的经济鱼类,肌肉中水解氨基酸的种类、含量顺序及多数氨基酸的含量在季节变化中有较大的保守性。  相似文献   

17.
A crucial epileptogenic site in the deep prepiriform cortex   总被引:16,自引:0,他引:16  
S Piredda  K Gale 《Nature》1985,317(6038):623-625
Antagonists of gamma-aminobutyric acid (GABA)- or glycine-mediated neurotransmission, muscarinic cholinergic agonists, and excitatory amino acids and their analogues are all considered to be potent chemoconvulsant agents. However, although systemic injections of these agents have been used to create experimental models of generalized epilepsy, there has been no identification of a specific locus at which any of these drugs act to initiate generalized seizures. We recently located a forebrain region from which seizures can be elicited by the GABA antagonist bicuculline, and now report that manipulations of excitatory amino acid transmission and cholinergic transmission can also elicit seizures from this site. Bilateral clonic seizures can be elicited after unilateral application of picomole amounts of bicuculline, kainic acid or carbachol and micromole amounts of glutamate. Local application of the GABA agonist muscimol prevents the appearance of seizures on subsequent microinjection of all convulsant agents examined, whereas local application of the muscarinic antagonist, atropine, only prevents seizures induced by carbachol. This region is therefore a site of action for the epileptogenic effects of neuroactive agents with diverse mechanisms of action; it may also represent a site at which GABA agonists could function therapeutically to control epileptogenesis.  相似文献   

18.
γ-氨基丁酸载体衍生物的合成   总被引:2,自引:0,他引:2  
γ- 氨基丁酸是中枢神经系统的抑制性神经递质,但在生理条件下,γ- 氨基丁酸的通透性较差,常通过其衍生物增强 γ- 氨基丁酸的生理活性,作者以γ- 氨基丁酸为原料合成了新γ- 氨基丁酸的载体化合物[4- (2,4—二羟基苯次甲氨基)丁酸酯],并经元素分析、红外光谱和核磁共振谱验证这些化合物的结构  相似文献   

19.
茶树体内游离氨—基酸对儿茶素代谢的影响   总被引:2,自引:0,他引:2  
茶树体内儿茶素代谢受C/N 代谢平衡状态所制约.通过氨基酸对~(14)CO_2掺入儿茶素的影响,发现Glu、Lys 有正效应,而Ala、phe 有负效应.分析不同施氮量茶梢中的游离氨基酸,结果表明,体内Glu、Ala、phe、Thr 等含量及代谢活性的不同,至少是影响儿茶素含量的原因之一.  相似文献   

20.
Huntington's disease (HD) is an autosomal dominant neurological disorder characterized by progressive chorea, cognitive impairment and emotional disturbance. The disease usually occurs in midlife and symptoms progress inexorably to mental and physical incapacitation. It has been postulated that an excitotoxin is involved in the pathogenesis of HD. Schwarcz and colleagues have shown that quinolinic acid (QA) can produce axon-sparing lesions similar to those observed in HD. The lesions result in a depletion of neurotransmitters contained within striatal spiny neurones, for example gamma-aminobutyric acid (GABA), while dopamine is unaffected. Recently, we and others have demonstrated that in HD striatum there is a paradoxical 3-5-fold increase in both somatostatin and neuropeptide Y which is attributable to selective preservation of a subclass of striatal aspiny neurones in which these peptides are co-localized. In the present study we demonstrate that lesions due to quinolinic acid closely resemble those of HD as they result in marked depletions of both GABA and substance P, with selective sparing of somatostatin/neuropeptide Y neurones. Lesions produced by kainic acid (KA), ibotenic acid (IA) and N-methyl-D-aspartate (MeAsp) were unlike those produced by QA, as they affected all cell types without sparing somatostatin/neuropeptide Y neurones. These results suggest that QA or a similar compound could be responsible for neuronal degeneration in HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号