首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
以海南某石英脉型金矿石为原料,进行尼尔森重选-浮选试验研究.通过GRG试验得出金矿中重选可回收金质量分数为80.88%.通过条件试验确定了该矿石尼尔森重选-浮选的最佳条件为:磨矿细度-74μm占80%,相对离心力60g,反冲水压16kPa,矿浆质量分数40%,戊基黄药用量200g/t,浮选时间5 min.原矿石品位9.8g/t,利用尼尔森选矿机一次分选可得品位230g/t,金回收率80.30%的重选精矿.重选尾矿品位2.0g/t,经过一次粗选一次精选三次扫选处理,可得浮选精矿品位57.3g/t,浮选金作业回收率75.66%.经尼尔森重选-浮选流程处理后,尾矿金品位降至0.5g/t,全流程金总回收率95.21%.  相似文献   

2.
针对青海某微细粒浸染、高砷,原矿氰化浸出率低的难处理金矿石,进行了原矿浮选试验研究,经过三种流程对比试验,最终推荐该金矿的选别流程为粗磨弱酸性条件下,一段粗选、两段扫选、两段精选、的全浮选流程,获得金精矿金品位48.2 g/t,金回收率87.15%的工艺指标.  相似文献   

3.
在研究福建省某钼矿厂难选低品位钼中矿性质基础之上,通过高效捕收剂、组合抑制剂的优化配伍,结合浮选与重选技术,实现了该钼矿物的高效综合利用,得出合理的浮选流程结构与药剂制度和最佳的重选工艺参数.浮选钼精矿产品品位为45.14%,回收率达到64.7%,钼浮选尾矿由重选可分别获得硫精矿和重选钼精矿,其中重选钼精矿产品品位为3.17%,回收率达到17.2%,整个流程中钼总回收率达到81.9%.  相似文献   

4.
对氧化钼矿的工艺矿物学特征及其综合利用技术进行研究.结果表明:氧化钼矿的主要矿物组成为钼华、钼钙矿、褐铁矿、黄铁矿及石英.在磨矿细度为200目以下含量65%时,采用混合浮选工艺,可得钼品位为7.41%的钼精矿,钼回收率为82.18%,其中含铅18.02%、含金7.96 g.t-1、含银1 002 g.t-1;采用联合碱浸法处理钼精矿,可获得钼浸出率为95.61%的工艺指标;采用氰化法处理碱浸渣,金银浸出率分别为94.55%、83.96%;采用浮选法处理氰化渣,可得铅品位为46.76%的铅精矿,铅回收率为52.83%;采用重选法回收浮选尾矿中的石英,可获得SiO2含量为97.12%、回收率为80.84%的石英产品.  相似文献   

5.
The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation–gold concentrate leaching–lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead–zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.  相似文献   

6.
To extract gold from a low-grade (13.43 g/t) and high-sulfur (39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp (CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry (TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis (MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate:gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.  相似文献   

7.
The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of “fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns”. Compared with the full-flotation-cells process, the cell–column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell–column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.  相似文献   

8.
广西金牙难浸金矿的工艺矿物学研究   总被引:1,自引:0,他引:1  
为了给含砷金矿的提金工艺流程提供理论依据,对广西金牙金矿的矿石开展了工艺矿物学研究.该矿是典型的含砷难浸复杂金矿,矿石含Au为6.28 g/t,含Ag为1.37 g/t.As的质量分数为0.58%,S的质量分数为3.10%,C的质量分数为1.76%,其中有机碳的质量分数为0.21%.金精矿含Au为52.61 g/t,含Ag为6.00 g/t.As的质量分数11.32%,S的质量分数为29.32%,C的质量分数为0.35%.矿石中的主要金属矿物为毒砂、黄铁矿,其次有方铅矿、闪锌矿和黄铜矿等.载金矿物主要有毒砂、黄铁矿;金的赋存形态为次显微金;矿石的有害组分为砷、碳质和黏土矿物.含砷矿物是以毒砂、...  相似文献   

9.
为确定难处理金矿的加工方法,在对矿样的的化学成分、粒度分布、赋存状态分析的基础上,进行了相关的浮选条件实验,确定了矿样的最佳浮选工艺流程和参数,并进行了浮选开路实验。结果表明:浮选精矿中的金的回收率为50.97%,金品位为8.75 g/t,精矿中金的回收率和品位都较低,说明该矿样不宜用浮选方法获取精矿,可以考虑用其他方法提金。  相似文献   

10.
低品位双重难处理金矿石工艺矿物学及浸金影响因素   总被引:3,自引:0,他引:3  
试验所用矿石来自我国云南某金矿,该矿含金2.4 g/t,砷0.97%,碳1.47%.它是典型的低品位含碳双重难处理金矿石,浮选精矿-氰化提金,金浸出率为10.43%;浮选精矿-焙烧-氰化工艺,金浸出率为46.52%,属于极难浸金矿.矿石主要金属矿物为黄铁矿、毒砂.脉石矿物主要为石英、绢云母、白云石、方解石、伊利石黏土矿物等.金的赋存状态绝大多数是"不可见金",主要为次显微、超显微的包裹金以及胶体金.金主要包裹于毒砂和黄铁矿晶体中.矿石中金矿物主要为自然金,少为银金矿.矿石金回收率低的原因主要是包裹金,矿石含砷、碳质以及黏土矿物.  相似文献   

11.
This study used specularite, a high-gradient magnetic separation concentrate, as a raw material in reverse flotation.An iron concentrate with a grade of 65.1 wt% and a recovery rate of 75.31% were obtained.A centrifugal concentrator served as the deep purification equipment for the preparation of iron oxide red pigments, and its optimal rotating drum speed, feed concentration, and other conditions were determined.Under optimal conditions, a high-purity iron oxide concentrate with a grade of 69.38 wt% and a recovery rate of 80.89% were obtained and used as a raw material for preparing iron oxide red pigment.Calcining with sulfuric acid produced iron red pigments with different hues.Simultaneously, middlings with a grade of 60.20 wt% and a recovery rate of 17.51% were obtained and could be used in blast furnace ironmaking.High-value utilization of specularite beneficiation products was thus achieved.  相似文献   

12.
The present investigation examines the viability of dolochar, a sponge iron industry waste material, as a reductant in the reduction roasting of iron ore slimes, which are another waste generated by iron ore beneficiation plants. Under statistically determined optimum conditions, which include a temperature of 900℃, a reductant-to-feed mass ratio of 0.35, and a reduction time of 30-45 min, the roasted mass, after being subjected to low-intensity magnetic separation, yielded an iron ore concentrate of approximately 64wt% Fe at a mass recovery of approximately 71% from the feed iron ore slime assaying 56.2wt% Fe. X-ray diffraction analyses indicated that the magnetic products contain magnetite and hematite as the major phases, whereas the nonmagnetic fractions contain quartz and hematite.  相似文献   

13.
The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and silicate bearing minerals was investigated. Silica-to-soda mole ratio and silicate dosage were found to have significant effect on the separation efficiency. The results show that an increase of Fe content in the concentrate is observed with concomitant reduction in SiO2 and Al2O3 levels when a particular type of sodium silicate at a proper dosage is used. The concentrate of 58.89wt% Fe, 4.68wt% SiO2, and 5.28wt% Al2O3 with the weight recovery of 38.74% and the metal recovery of 41.13% can be obtained from the iron ore slimes with 54.44wt% Fe, 6.72wt% SiO2, and 6.80wt% Al2O3, when Na2SiO3 with a silica-to-soda mole ratio of 2.19 is used as a depressant at a feed rate of 0.2 kg/t.  相似文献   

14.
对广西北海地区的钛铁矿砂矿尾矿进行了系统浮选试验研究,钛铁矿砂矿尾矿由原矿经过重选和磁选得到.研究表明,Pb(NO_3)_2对钛铁矿有活化作用,主要是由于Pb2+与钛铁矿发生特性吸附,提高了油酸钠对钛铁矿的捕收能力.以硫酸和水玻璃作为调整剂,Pb(NO_3)_2作为活化剂,油酸钠作为捕收剂进行浮选,在硫酸用量900 g/t,水玻璃用量400 g/t,Pb(NO_3)_2用量30 g/t,油酸钠用量450 g/t的药剂制度条件下,经过一次粗选、两次精选的闭路浮选流程,可得到TiO_2品位为39.55%,回收率为54.61%的钛精矿.  相似文献   

15.
本文对文峪金矿铜铅混合精矿进行了振动高梯度磁选分离铜铅的试验研究,并由此提出了浮-磁-重联合流程选矿新工艺,同时对新工艺进行了试验研究,取得很好的试验指标。研究结果表明,振动高梯度磁选的采用有可能使原现场整个分选工艺产生根本性的变革,从而提高生产指标,增加经济效益。  相似文献   

16.
The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore, namely banded hematite quartzite (BHQ) containing 41.8wt% Fe and 41.5wt% SiO2, by using oleic acid, methyl isobutyl carbinol (MIBC), and sodium silicate as the collector, frother, and dispersant, respectively. The relative effects of these variables have been evaluated in half-normal plots and Pareto charts using central composite rotatable design. A quadratic response model has been developed for both Fe grade and recovery and optimized within the experimental range. The optimum reagent dosages are found to be as follows: collector concentration of 243.58 g/t, dispersant concentration of 195.67 g/t, pH 8.69, and conditioning time of 4.8 min to achieve the maximum Fe grade of 64.25% with 67.33% recovery. The predictions of the model with regard to iron grade and recovery are in good agreement with the experimental results.  相似文献   

17.
Gold telluride ores are important gold refractory ores due to the presence of sulfides and other gangue materials. The classification and main physical properties of gold telluride ores were described, and possible treatment methods including flotation, leaching, and oxidation were reviewed. The results show that flotation procedures are much easier for gold tellurides compared to other refractory gold-bearing ores. For the conventional cyanide leaching process, pretreatment such as oxidation is required to achieve high gold recovery. Roasting is a relatively simple but not environment-friendly method; bio-oxidation technology seems to be more suitable for the oxidation of flotation concentrate. Other treatment methods involve cyanide leaching, thiourea leaching, ammoniacal thiosulfate leaching, carbon-in-pulp, and resin-in-pulp, all of which are less commonly utilized.  相似文献   

18.
The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and Al2O3), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an electric arc furnace to replace scrap steel.  相似文献   

19.
采用化学分析、X射线衍射、光学显微镜及扫描电子显微镜分析等检测技术,对抱伦金矿原矿石进行工艺矿物学研究,为选矿工艺的选择提供理论依据.结果表明:该矿石含金10.1g·t-1,含硫0.65%,主要脉石矿物为石英和白云母,属低硫石英脉型金矿.矿石中的金矿物主要为自然金,质量分数为90.58%.金矿物粒度范围广,巨粒金(>300μm)、粗粒金(74~300μm)、中粒金(37~74μm)、细粒金(10~37μm)及微粒金(0.10~10μm)的质量分数分别为3.84%,28.85%,18.04%,23.52%和25.75%.金矿物在矿石中的赋存状态为包裹金、粒间金和裂隙金,质量分数分别为48.37%,43.24%和 8.39%.在工艺矿物学研究的基础上,提出多段磨矿配合尼尔森重选-浮选的选矿工艺流程.  相似文献   

20.
The possibility of using a centrifugal-gravity concentrator to reject Mg-bearing minerals and minimize metal losses in the flotation of base metals was evaluated. Sample characterization, batch scoping tests, pilot-scale tests, and regrind-flotation tests were conducted on a Ni flotation tailings stream. Batch tests revealed that the Mg grade decreased dramatically in the concentrate products. Pilot-scale testing of a continuous centrifugal concentrator (Knelson CVD6) on the flotation tailings revealed that a concentrate with a low mass yield, low Mg content, and high Ni upgrade ratio could be achieved. Under optimum conditions, a concentrate at 6.7% mass yield was obtained with 0.85% Ni grade at 12.9% Ni recovery and with a low Mg distribution (1.7%). Size partition curves demonstrated that the CVD also operated as a size classifier, enhancing the rejection of talc fines. Overall, the CVD was capable of rejecting Mg-bearing minerals. Moreover, an opportunity exists for the novel use of centrifugal-gravity concentration for scavenging flotation tailings and/or after comminution to minimize amount of Mg-bearing minerals reporting to flotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号