首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A M Fry  L A Matis 《Nature》1988,335(6193):830-832
The influence of major histocompatibility complex (MHC) gene products on the T-lymphocyte alpha beta receptor (TCR) repertoire is well documented, but how specificity is also generated for a diverse array of foreign peptide antigens is unknown. One proposed mechanism is that the TCR repertoire is selected by the recognition of processed self-antigens bound to MHC molecules. Here, we examine the influence of non-MHC-encoded self-antigens on the TCR repertoire expressed in an antigen-specific immune response. Most pigeon cytochrome c-specific, Ek alpha Ek beta (Ek) Ia-restricted T cells from B10.A mice express a product of the V alpha 11 gene family in association with a V beta 3 gene-encoded protein. We therefore examined V alpha 11 and V beta 3 gene expression in cytochrome c-specific T-cell lines derived from various mouse strains with different non-MHC genetic backgrounds. T cells from several strains failed to express any V beta 3 due to tolerance induced by Mlsc-encoded self-antigens. Variable levels of V alpha 11 messenger RNA (mRNA) were expressed by antigen-specific T cells from all the strains. In one strain V beta 3 was expressed in the relative absence of V alpha 11. These results directly demonstrate that self-tolerance alters TCR gene usage in the immune response to a foreign antigen, and indicate that TCR V alpha and V beta proteins may, in part, be independently selected.  相似文献   

2.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

3.
R Abe  M S Vacchio  B Fox  R J Hodes 《Nature》1988,335(6193):827-830
The precursor frequency of T cells specific for any given foreign antigen is, in general, extremely low. Prominent exceptions to this rule are the T cells that are specific for foreign major histocompatibility complex (MHC) products or for products of the minor lymphocyte stimulatory (Mls) genes in the mouse which are present at high frequencies. Here, we report a striking overlap or cross-reactivity between the T cells specific for the protein antigen pigeon cytochrome c in association with Ek alpha Ek beta and the set of T cells specific for Mlsc products. In addition, we demonstrate that the basis for this overlap is the predominant expression of one T-cell receptor (TCR) V beta gene, V beta 3, by T cells that recognize Mlsc products. These results indicate the importance of specific TCR alpha beta dimers in the recognition of Mlsc products and that positive or negative selection of T cells specific for Mls self-determinants may selectively alter the repertoire of T cells available for MHC-restricted recognition of foreign antigens.  相似文献   

4.
Thymic selection process induced by hybrid antibodies   总被引:2,自引:0,他引:2  
F Zepp  U D Staerz 《Nature》1988,336(6198):473-475
Thymus-derived (T) lymphocytes using the alpha beta T-cell antigen receptor (TCR) recognize fragmented antigen in conjunction with surface molecules encoded by genes of the major histocompatibility complex (MHC). Peripheral T lymphocytes preferentially see antigen presented by self rather than by foreign MHC molecules, and autoreactive T lymphocytes are deleted. Thus, the peripheral T-lymphocyte repertoire is skewed towards recognition of antigen in the context of self-MHC and towards tolerance to self-antigens. During T-lymphocyte development in the thymus, this repertoire is formed by the interaction of TCR with MHC molecules resulting in positive and negative selection phenomena. Hybrid antibodies (HAbs) that carry binding sites to the TCR and to a surface marker on another cell can engage all T lymphocytes regardless of their specificity. It should be possible to mimic selection processes in normal animals with HAb that specifically link members of a TCR family to MHC molecules on the thymic stroma. We have probed T-lymphocyte development with HAbs linking V beta 8-positive TCR to either class I or class II MHC products in thymic organ culture. Thymocytes exposed to either HAb in an early stage of maturation respond with a significant increase in the frequency of V beta 8-carrying cells. At a later stage of development V beta 8-positive thymocytes are depleted. These results illustrate the succession of positive and negative selection in the developing thymus of normal mice.  相似文献   

5.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

6.
R L Modlin  M B Brenner  M S Krangel  A D Duby  B R Bloom 《Nature》1987,329(6139):541-545
Cells which can suppress the immune response to an antigen (TS cells) appear to be essential for regulation of the immune system. But the characterization of the TS lineage has not been extensive and many are sceptical of studies using uncloned or hybrid T-cell lines. The nature of the antigen receptor on these cells is unclear. T cells of the helper or cytotoxic lineages appear to recognize their targets using the T-cell receptor (TCR) alpha beta-CD3 complex. TCR beta-gene rearrangements are also found in some murine and human suppressor cell lines but others have been shown not to rearrange or express the beta-chain or alpha-chain genes. We previously established TS clones derived from lepromatous leprosy patients which carry the CD8 antigen and recognize antigen in the context of the major histocompatibility complex (MHC) class II molecules in vitro. We here report the characterization of additional MHC-restricted TS clones which rearrange TCR beta genes, express messenger RNA for the alpha and beta chains of the TCR and express clonally unique CD3-associated TCR alpha beta structures on their cell surface but do not express the gamma chain of the gamma delta TCR on the cell surface. We conclude that antigen recognition by at least some human CD8+ suppressor cells is likely to be mediated by TCR alpha beta heterodimers.  相似文献   

7.
J Kaye  S M Hedrick 《Nature》1988,336(6199):580-583
The majority of peripheral T lymphocytes bear cell-surface antigen receptors comprised of a disulphide-linked alpha beta dimer. In an immune response, this receptor endows T cells with specificities for foreign antigenic protein fragments bound to cell surface glycoproteins encoded in the major histocompatibility complex (MHC). At a high frequency (greater than 1%), the same population of T lymphocytes responds to allogeneic MHC glycoproteins, or to differences at other genetic loci termed Mls, in conjunction with MHC. The alpha beta-antigen receptor has been implicated in alloreactivity and Mls reactivity. In fact, many monoclonal T-cell lines recognize a foreign protein fragment bound to self-MHC molecules and, in addition, recognize allogeneic MHC glycoproteins, an Mls-encoded determinant, or both. For at least one T-cell clone, a monoclonal antibody directed against the alpha beta antigen receptor has been shown to block activation induced by either antigen-bound self-MHC or by allogeneic MHC. However, it remains to be demonstrated directly that a single alpha beta receptor can mediate antigen specificity, alloreactivity and Mls reactivity, a prerequisite to understanding the structural basis of these high-frequency cross-reactivities. To address this issue we have performed transfers of receptor chain genes from a multiple-reactive T-cell clone into an unrelated host T lymphocyte. We now demonstrate definitively that the genes encoding a single alpha beta-receptor chain pair can transfer the recognition of self-MHC molecules complexed with fragments of antigen, allogeneic MHC molecules, and an Mls-encoded determinant (presumably in conjunction with MHC). In this case the transfer of antigen specificity and alloreactivity requires a specific alpha beta-receptor chain combination, whereas Mls reactivity can be transferred with the beta-chain gene alone into a recipient expressing a randomly selected alpha-chain.  相似文献   

8.
R H Seong  J W Chamberlain  J R Parnes 《Nature》1992,356(6371):718-720
Mature T cells express either CD4 or CD8 on their surface. Most helper T cells express CD4, which binds to class II major histocompatibility complex (MHC) proteins, and most cytotoxic T cells express CD8, which binds to class I MHC proteins. In the thymus, mature CD4+CD8- and CD4-CD8+ T cells expressing alpha beta T-cell antigen receptors (TCR) develop from immature thymocytes through CD4+CD8+ alpha beta TCR+ intermediates. Experiments using mice transgenic for alpha beta TCR suggest that the specificity of the TCR determines the CD4/CD8 phenotype of mature T cells. These results, however, do not indicate how a T cell differentiates into the CD4 or CD8 lineage. Here we show that the CD4 transmembrane region and/or cytoplasmic tail mediates the delivery of a specific signal that directs differentiation of T cells to a CD4 lineage. We generated transgenic mice expressing a hybrid molecule composed of the CD8 alpha extracellular domains linked to the CD4 transmembrane region and cytoplasmic tail. We predicted that this hybrid molecule would bind to class I MHC proteins through the extracellular domains but deliver the intracellular signals characteristic of CD4. By crossing our transgenic mice with mice expressing a transgenic alpha beta TCR specific for a particular antigen plus class I MHC protein, we were able to express the hybrid molecule in developing thymocytes expressing the class I MHC-restricted TCR. Our results show that the signal transduced by the hybrid molecule results in the differentiation of immature thymocytes expressing a class I-restricted TCR into mature T cells expressing CD4.  相似文献   

9.
Y W Choi  A Herman  D DiGiusto  T Wade  P Marrack  J Kappler 《Nature》1990,346(6283):471-473
The alpha beta T-cell antigen receptor (TCR) recognizes antigenic peptides in the context of self major histocompatibility complex (MHC) molecules. The specificity of recognition of MHC plus antigen is generally determined by a combination of the variable elements of alpha- and beta-chains of the TCR. Several types of antigen, however, have been identified that, when bound to MHC molecules, stimulate T cells bearing particular variable-region beta-chain (V beta) elements irrespective of the other variable components of the TCR. These have been termed 'superantigens', and here we are concerned with one type of superantigen, the toxins produced by Staphylococcus aureus. T cells have been found that bear closely related members of the same V beta family but respond differently to S. aureus toxins; in particular, cells bearing the human V beta 13.2 element respond to toxin SEC2, whereas cells bearing human V beta 13.1 do not. We have now defined the residues of the V beta element responsible for this difference, and find that they reside in a region thought to lie on the side of the TCR molecule, away from the conventional antigen/MHC-binding site. The evolutionary conservation of this site may be due to its having an important role in some function of the TCR other than the binding of conventional antigen plus MHC.  相似文献   

10.
H G Rammensee  M J Bevan 《Nature》1984,308(5961):741-744
Mature T cells respond to foreign antigens in the context of self major histocompatibility complex (MHC)-encoded products: T helper cells recognize antigen in the context of class II molecules, while cytotoxic T cells (CTL) recognize antigen plus class I molecules. Recent evidence suggests that the MHC-restricted T cell is unable to recognize either the foreign antigen or the self-MHC product alone, but only a complex of the two. Unresponsiveness to self antigens--self tolerance--implies the deletion or suppression of clones of T cells having reactivity to self antigens. Here we demonstrate the presence in normal mice of T cells which recognize self antigens together with allogeneic MHC products. This finding suggests the MHC restriction of T-cell recognition during the entire process of T-cell ontogeny, that is, MHC restriction of self tolerance.  相似文献   

11.
Human cluster-of-differentiation 1 (CD1) is a family of cell surface glycoproteins of unknown function expressed on immature thymocytes, epidermal Langerhans cells and a subset of B lymphocytes. Three homologous proteins, CD1a, b and c, have been defined serologically, and the CD1 gene locus on human chromosome 1 contains five potential CD1 genes. Analysis of the predicted amino-acid sequences of CD1 molecules reveals a low but significant level of homology to major histocompatibility complex (MHC) class I and class II molecules, and, like MHC class I molecules, CD1 molecules are associated non-covalently with beta 2-microglobulin. These structural similarities to known antigen-presenting molecules, together with the expression of CD1 on cells capable of antigen presentation, suggest a role for CD1 molecules in antigen recognition by T cells. Here we demonstrate the specific recognition of CD1a by a CD4-CD8- alpha beta T-cell receptor (TCR) expressing cytolytic T lymphocyte (CTL) line and the specific recognition of CD1c by a CD4-CD8- gamma delta TCR CTL line. The interaction of CD1-specific CTLs with CD1+ target cells appeared to involve the CD3-TCR complex, and did not show evidence of MHC restriction. These results suggest that for a subset of T cells, CD1 molecules serve a function analogous to that of MHC class I and II molecules.  相似文献   

12.
Differentiation of bone marrow derived precursors into mature T cells takes place in the thymus. During differentiation, T cells develop the receptor repertoire which allows them to recognize antigen in the context of self major histocompatibility complex (MHC) molecules. Mature T helper cells (mostly CD4+ CD8-) recognize antigen in the context of class II MHC molecules, whereas cytotoxic T cells (mostly CD4-CD8+) recognize antigen in the context of class I MHC determinants. Thymic MHC-encoded determinants greatly influence the selection of the T-cell receptor repertoire. In addition to positive selection, a negative selection to eliminate self-reactive T-cell clones is thought to occur in the thymus, but how this 'education' occurs is not well understood. It has been suggested that during differentiation an interaction between the T-cell receptor (TCR) and MHC-encoded determinants occurs, leading to the selection of an MHC-restricted receptor repertoire. In support of this hypothesis, class-II-specific, CD4+ CD8- helper T cells fail to develop in mice neonatally treated with anti-class II monoclonal antibody (mAb). As CD4-CD8+ cells differ from the CD4+ CD8- lineage (in function, MHC-restriction specificity and perhaps site of education) we examined whether interactions with MHC determinants are also necessary for the development of class-I-specific T cells. Here we show that mice chronically treated with anti-class I mAb from birth lack CD4-CD8+ cells and cytotoxic T-cell precursors, indicating that most CD4-CD8+ T cells need interaction with class I MHC molecules during differentiation.  相似文献   

13.
P Walden  Z A Nagy  J Klein 《Nature》1985,315(6017):327-329
Regulatory (helper and suppressor) T lymphocytes become activated only when foreign antigen is presented to them on the surface of antigen-presenting cells (APC), together with class II major histocompatibility complex (MHC) molecules (heterodimers of polypeptides of 28,000 and 35,000 relative molecular mass). Once activated by a certain foreign antigen--MHC combination, T cells react to the same antigen only in combination with the same MHC molecule, a phenomenon termed MHC restriction of T-cell recognition (reviewed in refs 1,5). Studies of the mechanisms involved in antigen presentation and MHC restriction have been hampered mainly by the virtual impossibility of inducing T-cell responses in the absence of APC. We describe here the production of synthetic lipid vesicles with inserted class II MHC molecules and a protein antigen coupled covalently to the lipid. These liposomes are shown to stimulate cloned helper T cells and T-cell hybridomas in an antigen-specific, MHC-restricted manner in the absence of APC. Thus, the recognition of foreign antigen together with class II MHC molecules seems to be the only signal required for the activation of antigen-primed regulatory T cells. Furthermore, 'processing' of antigen by APC is not essential for its recognition by T cells.  相似文献   

14.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

15.
J W Kappler  U Staerz  J White  P C Marrack 《Nature》1988,332(6159):35-40
In mice the product of the Mlsa locus is an unusual antigen capable of interaction with certain products of the major histocompatibility locus (MHC) to form a ligand for a large portion of the T-cell alpha/beta receptor repertoire, including nearly all receptors that use V beta 8.1. The presence of Mlsa/MHC during T-cell development results in the deletion of T cells that express V beta 8.1, documenting the importance of clonal deletion in establishing tolerance to self antigens.  相似文献   

16.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

17.
D Gay  P Maddon  R Sekaly  M A Talle  M Godfrey  E Long  G Goldstein  L Chess  R Axel  J Kappler 《Nature》1987,328(6131):626-629
Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.  相似文献   

18.
Positive selection of CD4+ thymocytes controlled by MHC class II gene products   总被引:20,自引:0,他引:20  
The mature T-cell antigen receptor repertoire is characterized by lack of reactivity to self-components as well as by preferential reactivity to foreign antigens in the context of polymorphic self-proteins encoded within the major histocompatibility complex. Whereas the former characteristic (referred to as negative selection or tolerance) is associated with intrathymic deletion of T cells expressing T-cell antigen receptor beta-chain variable (V beta) domains, which confer a preferential reactivity to self antigens, the existence of the latter (referred to as positive selection or MHC restriction) has so far only been inferred indirectly from functional studies. We show here that intrathymic deletion of V+beta 6 T cells (reactive with a self-antigen encoded by the Mlsa locus) is controlled by polymorphic MHC class II determinants. Furthermore, in mice lacking expression of Mlsa, the same class II MHC loci control the frequency of occurrence of V+beta 6 cells among mature CD4+ T lymphocytes. These data are direct evidence for positive selection by MHC determinants in the thymus in unmanipulated animals.  相似文献   

19.
E P Reich  R S Sherwin  O Kanagawa  C A Janeway 《Nature》1989,341(6240):326-328
Insulin-dependent diabetes mellitus is widely believed to be an autoimmune disease. Recent onset diabetics show destruction of insulin-secreting pancreatic beta-cells associated with a lymphocytic infiltrate (insulitis), with autoantibodies to beta-cells being found even before the onset of symptoms. Susceptibility to the disease is strongly influenced by major histocompatibility complex (MHC) class II polymorphism in both man and experimental animal models such as the non-obese diabetic (NOD) mouse. As MHC class II molecules are usually associated with dominant immune responsiveness, it was surprising that introduction of a transgenic class II molecule, I-E, protected NOD mice from insulitis and diabetes. This could be explained by a change either in the target tissue or in the T cells presumed to be involved in beta-cell destruction. Recently, several studies have shown that I-E molecules are associated with ontogenetic deletion of T cells bearing antigen/MHC receptors encoded in part by certain T-cell receptor V beta gene segments. To determine the mechanism of the protective effect of I-E, we have produced cloned CD4+ and CD8+ T-cell lines from islets of recently diabetic NOD mice. These cloned lines are islet-specific and pathogenic in both I-E- and I-E+ mice. Both CD4+ and CD8+ cloned T cells bear receptors encoded by a V beta 5 gene segment, known to be deleted during development in I-E expressing mice. Our data provide, therefore, an explanation for the puzzling effect of I-E on susceptibility to diabetes in NOD mice.  相似文献   

20.
D R Karp  C L Teletski  P Scholl  R Geha  E O Long 《Nature》1990,346(6283):474-476
Several exoproteins from the bacterium Staphylococcus aureus are highly potent polyclonal activators of T cells in the presence of cells bearing class II antigens of the major histocompatibility complex (MHC). These toxins, including the toxic shock syndrome toxin (TSST-1), act at nanomolar concentrations, bind directly to class II molecules, and do not require the processing typical of nominal antigen. Each toxin is capable of stimulating a subpopulation of peripheral T lymphocytes bearing particular V beta sequences as part of their alpha beta T-cell receptors. It is not known how these so-called 'superantigens' bind to class II and how this binding stimulates T cells. In this study, the different affinities of TSST-1 for human class II molecules DR and DP were exploited to define the region of a class II molecule necessary for high-affinity binding. Using chimaeric alpha- and beta-chains of DR and DP expressed at the surface of transfected murine fibroblasts and a binding assay with TSST-1, it was shown that the alpha 1 domain of DR is essential for high-affinity binding, and further that TSST-1 binding did not prevent subsequent binding of a DR-restricted antigenic peptide. This is compatible with a model of superantigen making external contacts with both class II and T cell receptor, and suggests that the V beta portion of the T-cell receptor interacts with the nonpolymorphic alpha-chain of DR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号