首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
采用环氧粘贴法对21个100 mm×100 mm×250 mm混凝土和聚丙烯纤维混凝土试块进行单轴抗拉试验,研究不同尺度聚丙烯纤维及其混杂对混凝土单轴抗拉性能的影响,分析不同尺度聚丙烯纤维混凝土的单轴拉伸应力应变全曲线。试验结果表明:单掺及混掺粗细聚丙烯纤维对混凝土抗拉强提高幅度为11%~27%;单掺粗聚丙烯纤维混凝土及粗细混掺聚丙烯纤维混凝土在单轴拉伸过程中出现了低应力应变硬化现象,单掺及混掺粗细聚丙烯纤维混凝土应力应变曲线下降段所包围面积大于素混凝土应力应变曲线下包面积。不同尺度聚丙烯纤维混凝土抗拉韧性增强效果排序:混掺粗细纤维混凝土>单掺粗纤维混凝土>单掺细纤维混凝土>素混凝土。  相似文献   

2.
选用2种尺寸聚丙烯细纤维与1种聚丙烯粗纤维,进行单掺及混掺,对9组不同纤维掺量试件进行快速冻融循环试验、抗压、劈裂试验及压汞试验,研究不同冻融次数下混凝土质量、动弹性模量变化以及冻融循环前后混凝土拉、压强度变化;研究多尺寸聚丙烯纤维对混凝土孔结构的改善情况;研究多尺寸聚丙烯纤维混凝土孔结构与抗冻性的关系,并对孔结构对混凝土抗冻性能的影响加以分析。试验结果表明:将聚丙烯纤维掺入素混凝土后,混凝土的微观孔结构和抗冻性能得到明显改善;在相同掺量条件下,聚丙烯粗纤维和多尺寸聚丙烯纤维对混凝土抗冻性有较大改善,且多尺寸聚丙烯纤维对混凝土的抗冻性改善效果最好:相比于素混凝土冻融后抗拉、压强度,单掺聚丙烯细纤维混凝土强度损失分别降低了9.95%~11.94%和4.29%~7.62%,单掺聚丙烯粗纤维混凝土强度损失分别降低了27.36%和16.67%,混掺多尺寸聚丙烯纤维混凝土强度损失分别降低了46.77%~53.23%和41.90%~50%。  相似文献   

3.
采取氯离子渗透性试验(NEL法)和微观扫描电镜(SEM)试验相结合的方法,研究未加载及施加不同应力水平轴压荷载时单掺聚丙烯纤维、单掺复合矿物质(粉煤灰/硅灰,质量比4∶1),以及混掺聚丙烯纤维和复合矿物质时混凝土中氯离子扩散系数,进而研究混掺聚丙烯纤维与复合矿物质混凝土抗氯离子渗透性能.研究表明:未加载时,混掺适量的复合矿物质与聚丙烯纤维,混凝土试块在微观结构上表现为骨料和水泥石间的密实性提高,裂纹数量和宽度明显减小;在宏观性能上表现为氯离子扩散系数降低,与单掺聚丙烯纤维和单掺复合矿物质相比,混凝土的抗氯离子渗透性有显著提高.混凝土的抗氯离子渗透性的最优配比是:混掺0.1%聚丙烯纤维和25%复合矿物质.加载条件下,氯离子扩散系数呈现先略微下降再上升趋势.在相同应力比下,混掺聚丙烯纤维和复合矿物质混凝土的氯离子扩散系数最小.  相似文献   

4.
为研究预加荷载作用下聚丙烯纤维混凝土(polypropylene fiber reinforced concrete,PFRC)的抗渗性能,选用1种聚丙烯粗纤维和2种聚丙烯细纤维进行单掺和混掺,在5种荷载水平下进行了氯离子扩散系数试验,分析了不同混掺比例下PFRC试件在不同荷载水平作用下的氯离子扩散系数变化规律.采用压汞法和电镜扫描研究了纤维混掺和荷载大小对混凝土微观孔结构的影响.结果表明:在5种轴向荷载水平下混掺多尺寸PFRC试件A8的氯离子扩散系数分别降低了93.9%、90.8%、77.5%、63.5%和66.5%,均为降低幅度最大的一组,混掺PFRC的抗渗性能优于素混凝土和单掺PFRC;同时粗细纤维混掺可以形成三维空间网架结构,能在不同阶段产生协同作用,有效地提高混凝土在不同荷载水平作用下的抗渗性能.  相似文献   

5.
PVA纤维对水工抗冲磨混凝土性能的影响   总被引:3,自引:0,他引:3  
为了改善混凝土的抗裂性能和抗冲磨性能,确保泄水建筑物的安全运行,在抗冲磨混凝土中掺入具有高强度和高弹性模量的聚乙烯醇(PVA)纤维.研究了PVA纤维混凝土的力学性能、变形性能、抗裂性能和抗冲磨性能,并与聚丙烯(PP)纤维混凝土的性能进行了对比.试验结果表明:当PVA纤维掺量为0.9 kg/m3时,混凝土的28,90和180 d抗压强度基本不变;劈拉强度分别增加了4.4%,8.4%和5.7%;极限拉伸值分别增加了10%,11%和4%.PVA纤维对混凝土早期干缩有一定的抑制效果,但后期混凝土的干缩值略有增加;混凝土塑性阶段的抗裂性能提高;混凝土的90和180 d抗冲磨强度增加.与PP纤维相比,PVA纤维对抗冲磨混凝土性能的改善效果更好.  相似文献   

6.
 为确保核废料运输安全以及长期耐久性,采用正交化配比设计,在混凝土中单掺和混掺钢纤维、聚丙烯纤维、粉煤灰,分别在常温下和受热150℃后进行弯曲韧性试验,通过极差和方差分析,量化了各掺料类型和掺量对于混凝土韧性的影响效果:纤维类型和掺量对于高性能混凝土开裂后力学性能的改善效果更加明显,受热后这-特征更为显著;长度较长、剪切螺纹型的钢纤维A在受热前后阻裂增韧效果均最佳;随着纤维掺量的增加,混掺钢纤维混凝土的弯曲性能基本呈现增强趋势,若总掺量相近,常温下混掺钢纤维混凝土弯曲性能优于单掺,受热后二者性能相近。  相似文献   

7.
采用改进的平板法进行聚丙烯、玄武岩纤维掺量对超高强混凝土抗裂性能影响的试验研究,并将掺量为6 kg·m-3的玄武岩纤维和体积掺量为1%的钢纤维分别与不同掺量的聚丙烯纤维进行混杂,研究混杂纤维超高强混凝土的抗裂性能.试验结果表明,纤维掺入超高强混凝土中能改善超高强混凝土的早龄期抗裂性能,并且混杂纤维混凝土的抗裂性能要明显优于单掺一种纤维的混凝土,体现出正混杂效应.  相似文献   

8.
混杂纤维超高强混凝土抗裂性能试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用改进的平板法进行聚丙烯、 玄武岩纤维掺量对超高强混凝土抗裂性能影响的试验研究,并将掺量为6 kg·m-3的玄武岩纤维和体积掺量为1%的钢纤维分别与不同掺量的聚丙烯纤维进行混杂,研究混杂纤维超高强混凝土的抗裂性能. 试验结果表明,纤维掺入超高强混凝土中能改善超高强混凝土的早龄期抗裂性能,并且混杂纤维混凝土的抗裂性能要明显优于单掺一种纤维的混凝土,体现出正混杂效应.  相似文献   

9.
陈家来 《科技促进发展》2010,(8):144-144,145
文章研究了掺加异型塑钢纤维、钢纤维以及这两种纤维混杂的混凝土梁的抗弯冲击性能。测定了在不同纤维掺量下混凝土梁的初裂冲击次数.破坏冲击次数以及冲击能。试验结果表明:混掺纤维此单掺纤维显著提高了混凝土的冲击能和延性,但对初裂性能影响不大。  相似文献   

10.
为研究多尺寸聚丙烯纤维混凝土的抗弯韧性,采用四点弯曲试验对30个长×宽×高为400 mm×100 mm×100 mm的聚丙烯纤维混凝土试件进行研究,得到纤维混凝土梁的荷载-挠度曲线。基于美国ASTM-C1399-98方法,研究不同尺寸聚丙烯纤维及其混杂纤维对混凝土抗弯韧性的影响。研究结果表明:在相同掺量条件下,直径越小、长度越短的聚丙烯细纤维对混凝土裂前抗弯韧性改善效果越好;聚丙烯粗纤维和多尺寸聚丙烯纤维对混凝土裂后抗弯韧性有较大改善,并且在裂后出现低应力应变硬化现象;在相同掺量条件下,多尺寸聚丙烯纤维对混凝土的抗弯韧性改善效果最好;相对于素混凝土剩余强度,单掺聚丙烯细纤维混凝土剩余强度提高1.53~2.53倍,单掺聚丙烯粗纤维混凝土提高5.58~8.88倍,多尺寸聚丙烯纤维混凝土提高7.76~10.82倍。  相似文献   

11.
研究了聚丙烯纤维体积掺量为0.3%时,不同钢纤维掺量对活性粉末混凝土高温后轴心抗拉强度、抗压强度、抗折强度、拉压比、折压比的影响及其随温度的变化规律。结果表明:聚丙烯纤维能够有效抑制爆裂、改善活性粉末高温后的性能;混掺聚丙烯纤维和钢纤维能够提高高温后混杂纤维活性粉末混凝土力学性能,500℃之前损伤率较小,500℃之后损伤率较大;混掺2%钢纤维的混杂纤维活性粉末混凝土高温后的拉压比、折压比提高较多,混杂纤维可以优势互补。  相似文献   

12.
试验研究了钢纤维和聚丙烯纤维单一掺入,以及混合掺入时对再生混凝土力学性能的影响。结果表明:在再生混凝土中掺入钢纤维后,其各项力学性能都有所提高;单掺入聚丙烯纤维后其抗压强度有所降低,但显著提高了其劈裂抗拉强度和弹性模量;掺入混杂纤维后其抗压强度介于单掺钢纤维和单掺聚丙烯纤维之间,弹性模量受钢纤维掺量的影响较大,劈裂抗拉强度有显著提高,最高增强率达53.8%。加入纤维后,再生混凝土由脆性破坏变成塑性破坏。  相似文献   

13.
研究了改性聚丙烯纤维的长度及掺量对混凝土性能影响规律,试验表明,掺入改性聚丙烯纤维可以使混凝土的力学性能得到改善,并探讨了改性聚丙烯纤维的增强机理。  相似文献   

14.
为研究钢-聚丙烯粗纤维对超高性能混凝土(UHPC)的弯拉性能影响,采用四点弯曲试验,得到不同掺量(钢纤维与聚丙烯粗纤维掺入体积分数分别为0、0.5%、1.0%、1.5%)组合下的荷载-挠度曲线,从试件破坏形态、抗弯强度、弯曲韧性等方面进行阐述,并且利用单掺纤维拟合公式引出一个可行性较高的评价模型,并利用该模型对混杂纤维的协同效应进行分析,最后结合扫描电子显微镜(SEM)对混杂纤维UHPC微观结构进行观测。试验结果表明:钢-聚丙烯粗纤维的掺入显著提高了UHPC的抗弯强度,提高幅度为17.8%~101.2%;同时利用提出的模型发现混杂纤维的协同效应在总纤维掺入体积分数为1.5%~2.0%时呈现正协同效应,并在钢纤维与聚丙烯粗纤维掺入体积分数为1.0%时取得最好的正协同效应;另外,与不掺纤维的试件相比,钢纤维与聚丙烯粗纤维的加入分别使基体试件的初裂韧度提升了51.8%~98.2%与33.9%~48.2%,同时在钢纤维掺入体积分数为1.0%和聚丙烯粗纤维掺入体积分数为1.0%的搭配比例下,对UHPC弯曲韧性的改善效果最优,进一步验证了纤维协同效应评价模型;最后在微观层面揭示了纤维混杂产生的协同...  相似文献   

15.
为改善再生混凝土的性能,用废易拉罐剪成纤维条制备纤维再生混凝土。通过纤维再生混凝土、再生混凝土和天然骨料混凝土的坍落度试验、立方体抗压试验和劈裂抗拉试验,研究废易拉罐粗纤维的长度、掺量对再生混凝土工作性能和力学性能的影响。研究结果表明:纤维再生混凝土的流动性随废易拉罐粗纤维长度和掺量的增大而降低,但小掺量时(0.5%)纤维对再生混凝土流动性影响不大;粗纤维的加入,使得再生混凝土的抗压强度存在小幅波动,但劈拉抗拉强度大幅提高。可见,废易拉罐粗纤维可用作再生混凝土的增强材料,实现环保和固体废物资源化目的。  相似文献   

16.
聚丙烯纤维混凝土冻融损伤试验研究   总被引:1,自引:0,他引:1  
通过快速冻融循环试验,研究聚丙烯纤维混凝土冻融损伤性能.结果表明:冻融循环对聚丙烯纤维混凝土有较大影响,随冻融循环次数的增加,聚丙烯纤维混凝土损伤不断累积,相对动弹模、劈拉强度不断下降;掺加一定量的聚丙烯纤维,能有效提高混凝土的抗冻性能;在一定范围内,随聚丙烯纤维掺量的增加,强度损伤逐渐减小.冻融循环75次时,聚丙烯纤维混凝土的强度损伤变量最大达到77.7%,掺量为1.5 kg/m3的聚丙烯纤维对混凝土强度增益比达240.5%.在试验基础上,分析了聚丙烯纤维混凝土冻融损伤机理,建立了冻融循环作用下聚丙烯纤维混凝土强度损伤模型.  相似文献   

17.
聚丙烯纤维对水工混凝土耐久性的影响   总被引:2,自引:0,他引:2  
黄功学  赵军  高丹盈 《河南科学》2005,23(3):415-418
首先探讨了水工混凝土存在的影响其耐久性的开裂、冻融、碳化、磨损等问题,然后结合国内外关于聚丙烯纤维混凝土的试验研究成果,分析了聚丙烯纤维对水工混凝土抗裂、抗渗、抗冻、抗冲击、抗疲劳、抗冲耐磨和抗碳化等性能的改善作用,分析结果表明,聚丙烯纤维可有效提高混凝土的耐久性能.  相似文献   

18.
为了研究不同掺量的钢纤维与聚丙烯纤维对自密实混凝土工作性能和强度的影响,对掺入聚丙烯纤维、钢纤维以及两种纤维混杂的自密实混凝土进行工作性能、抗压强度、抗拉强度试验和混杂效应分析。试验结果表明:工作性能随着纤维掺量的增加而降低,且钢纤维对工作性能的影响更加明显;钢纤维对混凝土抗压强度、抗拉强度的提高大于聚丙烯纤维;两种纤维混杂时更能有效改善自密实混凝土脆性破坏特征,当钢纤维掺量为0.6%,聚丙烯纤维掺量为0.2%时,抗压强度的增幅最大,当钢纤维掺量为0.6%,聚丙烯掺量为0.15%时,抗拉强度的增幅最大;抗压强度与劈裂抗拉强度均部分呈现正混杂效应,且劈裂抗拉强度存在最优混杂效应。  相似文献   

19.
聚丙烯纤维对混凝土性能影响的试验研究   总被引:1,自引:0,他引:1  
文章研究了经过膨化和未经膨化的聚丙烯纤维对混凝土的掺杂效应。通过对掺入混凝土的聚丙烯纤维进行物理、化学、力学等方面的性能测试 ,分析了聚丙烯纤维掺入混凝土的可行性 ;通过对掺杂聚丙稀纤维混凝土进行力学性能的测试 ,研究了掺入纤维后混凝土性能的改变情况及其原因 ,进而结合试验结果分析影响掺杂效果的主要因素 ,提出聚丙烯纤维掺量的临界值。  相似文献   

20.
唐龙超 《科技信息》2013,(14):465-466
紧紧围绕聚丙烯纤维混凝土的早期收缩抗裂性能这一主题,从作用机理、试验研究等方面进行了研究。针对混凝土早期收缩开裂的特点,本文对掺加聚丙烯纤维混凝土和不掺加聚丙烯纤维混凝土的抗裂性能试验进行了对比分析。在同水灰比、同坍落度两种不同材料的试验条件下,用圆环约束试验装置对纤维混凝土的早期抗裂性能进行研究,为铁路客运专线混凝土防裂设计提供一个有益的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号