首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
Tails of unconventional myosins   总被引:5,自引:0,他引:5  
In addition to the conventional myosins (class II) required for processes such as muscle contraction and cytokinesis, the myosin superfamily of actin-based motor proteins includes at least 14 'unconventional' classes. These unconventional myosins are defined by myosin-like head (motor) domains attached to class-specific tail domains that differ greatly from those of myosin-II. The unconventional myosins account for almost two-thirds of the 28 or more myosin genes currently believed to be expressed in humans and 80-90% of the approximately 10 or more myosin genes expressed in a typical nonmuscle cell. Although these members of the myosin superfamily have not been as intensively investigated as the conventional myosins, unconventional myosins are known or believed to power many forms of actin-based motility and organelle trafficking. The presence of signaling domains such as kinase domains, SH3 domains, PH domains or GTPase-activating domains in the tails of unconventional myosins indicates that these proteins can also be components of signal transduction pathways. Since several classes of the myosin superfamily have been found only in lower eukaryotes or plants (VIII, XI, XIII and XIV), in this review we will focus on the structures and properties of the unconventional myosins found in multicellular animals (excluding classes I and V, which have been reviewed elsewhere recently). Special attention will be focused on the three classes of unconventional myosins that can cause deafness in mouse or humans when mutated. In addition, we discuss the discovery of a pair of intriguing domains, the Myosin Tail Homology 4 (MyTH4) and FERM (band 4.1, Ezrin, Radixin, Moesin) domains, that are present in the tails of otherwise very different myosins as well as a plant kinesin-like protein. Recent progress in the identification of novel unconventional myosins will also be summarized.  相似文献   

2.
We have investigated the reactivity of different human, rat and cat muscles to a monoclonal antibody directed against human alpha-cardiac myosin heavy chain. We have found that special fiber subpopulations of human masseter and extraocular muscles, as well as the bag fibers of human, rat and cat muscle spindles, were reactive to this antibody, indicating that these fibers expressed alpha-cardiac myosin heavy chain or a closely related isoform. This isomyosin was present in the spindle bag fibers at early fetal stages, whereas its expression in masseter and extraocular muscle fibers was not detected during the first 22 weeks of gestation. Our results add to the list of muscle proteins which are expressed in locations or at developmental stages other than those initially described, suggesting that a revision of the present nomenclature of the subgroups of myosin heavy chains might be considered in the future.  相似文献   

3.
Myosins are a large family of actin-based motor proteins that are involved in a variety of cellular processes. Class II, or conventional, myosins are organized into a number of multi-component structures such as muscle thick filaments, non-muscle filaments and the actomyosin ring during cell division. A number of conditions must be met for the proper assembly and organization of myosin II-containing structures, including the correct stoichiometry of myosin and its associated proteins, and the conformation and regulation of the myosin molecule itself by molecular chaperones and protein kinases. In this review we discuss the use of model organisms in the genetic analysis of the assembly and organization of myosin-containing structures.  相似文献   

4.
The patterns of Glut1 and Glut3 glucose transporter protein and mRNA expression were assessed during embryogenesis of chicken brain and skeletal muscle, Glut4 protein levels were also evaluated in skeletal muscle and heart, and Glut1 was examined in the developing heart and liver. Glut1 protein expression was detectable throughout brain ontogeny but was highest during early development. Glut1 mRNA levels in the brain remained very high throughout development. Glut3 protein was highest very early and very late and mRNA was highest during the last half of development. In embryonic skeletal muscle, the levels of Glut1and Glut3 proteins and mRNA were highest very early, and declined severely by mid-development. Glut1 protein and mRNA in the heart also peaked early and then decreased steadily. Although Glut1 mRNA levels were consistently high in the embryonic liver, Glut1 protein expression was not detected. These results suggest that (1) Glut1 is developmentally regulated in chick brain, skeletal muscle, and heart, (2) Glut1 mRNA is present in liver but does not appear to be translated, (3) Glut3 in brain increases developmentally but is virtually absent in muscle, and (4) Glut4 protein and mRNA appear to be absent from chick heart and skeletal muscle. Received 11 January 2001; accepted 14 February 2001  相似文献   

5.
The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and β myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:β) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and β myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow β isoform despite 91% sequence identity between the motor domains of α- and β-myosin. Among the features that differentiate α- from β-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than β-S1, α-S1 exhibits ~five-fold weaker actin affinity than β-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for β-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding.  相似文献   

6.
The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and β myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:β) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and β myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow β isoform despite 91% sequence identity between the motor domains of α- and β-myosin. Among the features that differentiate α- from β-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than β-S1, α-S1 exhibits ~five-fold weaker actin affinity than β-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for β-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding.  相似文献   

7.
Summary Sedimentation coefficient, intrinsic viscosity, amino acid composition and myosin binding capacity of actin from calf's heart were determined. The results are in fair agreement with values published for actin from other sources. No influence of strophantin-g or strophantin-k on the velocity of polymerization and the viscosity and thixotropy of f-actin could be detected.  相似文献   

8.
MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.  相似文献   

9.
RhoA/Rho-kinase pathway plays an important role in many pathological conditions. RhoA participates in the regulation of smooth muscle tone and activates many downstream kinases. The best characterized are the serine/threonine kinase isoforms (Rho-kinase or ROCK), ROCKα/ROCK2 and ROCKβ/ROCK1. ROCK is necessary for diverse functions such as local blood flow, arterial/pulmonary blood pressure, airway resistance and intestinal peristalsis. ROCK activation permits actin/myosin interactions and smooth muscle cells contraction by maintaining the activity of myosin light-chain kinase, independently of the free cytosolic calcium level. The sensitization of smooth muscle myofilaments to calcium has been implicated in many pathological states, such as hypertension, diabetes, heart attack, stroke, pulmonary hypertension, erectile dysfunction, and cancer. The focus of this review is on the involvement of RhoA/Rho-kinase in diseases. We will briefly describe the ROCK isoforms and the role of RhoA/Rho-kinase in the vasculature, before exploring the most recent findings regarding this pathway and various diseases.  相似文献   

10.
Endocytosis is a general term that is used to describe the internalization of external and plasma membrane molecules into the cell interior. In fact, several different mechanisms exist for the internalization step of this process. In this review we emphasize the work on the actin-dependent pathways, in particular in the yeastSaccharomyces cerevisiae, because several components of the molecular machinery are identified. In this yeast, the analysis of endocytosis in various mutants reveals a requirement for actin, calmodulin, a type I myosin, as well as a number of other proteins that affect actin dynamics. Some of these proteins have homology to proteins in animal cells that are believed to be involved in endocytosis. In addition, the demonstration that ubiquitination of some cell surface molecules is required for their efficient internalization is described. We compare the actin, myosin and ubiquitin requirements for endocytosis with recent results found studying these processes usingDictyostelium discoideum and animal cells.  相似文献   

11.
We have investigated the reactivity of different human, rat and cat muscles to a monoclonal antibody directed against human -cardiac myosin heavy chain. We have found that special fiber subpopulations of human massetr and extraocular muscles, as well as the bag fibers of human, rat and cat muscle spindles, were reactive to this antibody, indicating that these fibers expressed -cardiac myosin heavy chain or a closely related isoform. This isomyosin was present in the spindle bag fibers at early fetal stages, whereas its expression in masseter and extraocular muscle fibers was not detected during the first 22 weeks of gestation. Our results add to the list of muscle proteins which are expressed in locations or at developmental stages other than those initially described, suggesting that a revision of the present nomenclature of the subgroups of myosin heavy chains might be considered in the future.  相似文献   

12.
Production of pharmaceutical proteins in milk   总被引:2,自引:0,他引:2  
There is every reason to expect that it will be possible within the next few years to begin to use farm animals to produce large quantities of some of the human proteins that are needed for the treatment of disease. Revolutionary new opportunities for the production of novel proteins in milk have been created by the development of methods for gene transfer. Exploitation of these opportunities depends upon selection and cloning of milk protein genes and identification of the sequences that govern tissue specific hormonally induced expression in the mammary gland. Studies with three genes, ovine beta-lactoglobulin, rat beta-casein and whey acidic protein of rat and mouse, suggest that they may all meet this requirement. Fragments of the ovine beta-lactoglobulin, murine whey acidic protein and rabbit beta-casein genes have directed production of novel proteins in the milk of transgenic mice, sheep, rabbits and pigs. The proteins were biologically active and usually co-migrated with authentic proteins. In early experiments, protein concentration was low, but our recent observations suggest that fusion genes containing genomic clones direct production of concentrations of protein that are suitable for commercial exploitation. In the longer term, two approaches may offer the potential of more reliable expression. Control elements capable of directing expression that is independent of site of insertion of the gene, but dependent on the number of copies of the gene, have been identified for a small number of genes. The availability of such elements for the milk protein genes would increase the reliability of gene expression considerably. Alternatively, targeted mutation of genes may allow the insertion of coding sequences within an existing gene so avoiding position effects.  相似文献   

13.
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.  相似文献   

14.
The generation of human myogenic cell lines could potentially provide a valuable source for cell transplantation in myopathies. The dysregulation of proliferative-differentiative signals by viral oncogenes can result in the induction of apoptosis. Whether apoptosis occurred in myogenic cells expressing large T antigen (Tag) from SV40 upon differentiation was unknown. Human muscle satellite cells were transfected with two different constructs, containing either an origin-defective SV40 genome or Tag under vimentin promoter control. When differentiation was triggered, Tag expression reduced the formation of myotubes and dead cells showing apoptotic features were present. However, the cells expressing SV40 Tag under vimentin promoter control retained their capacity to form myotubes and expressed the myofibrillar proteins as myosin heavy chain and dystrophin when Tag expression was silent. Their apoptotic rate was similar to that of untransfected cells. The observation that apoptosis can be prevented by the down-regulation of Tag suggests that the programmed cell death induced in transformed cells can be reversed, and confirms the regulatory efficiency of the human vimentin promoter.  相似文献   

15.
The microfibrillar proteins fibulin-1 and fibulin-2 were previously identified as prominent components of the endocardial cushion tissue (ECT) during heart development and shown to persist in adult valves and septa. Immunogold staining has now been used to compare their localization in embryonic (days 9–11) and adult mouse heart with that of fibronectin and the chondroitin sulphate proteoglycan versican. All four proteins were deposited in the ECT, which consists of a hyaluronan-rich, mainly unstructured matrix, but were barely detectable in myocardial basement membranes or within endocardial cells. Digestion with hyaluronate lyase selectively released the fibulins and versican but not fibronectin from the ECT. Yet neither of the two fibulins bound to hyluronan in solid-phase assays, in contrast to versican. In the adult heart valve, all four proteins could be detected close to cross-striated collagen fibrils or microfibrils, but only versican was lost upon exposure to hyaluronate lyase. The data indicate that fibulins are associated with the hyaluronan-matrix of ECT through a bridge of versican, but that this association changes upon valve development to another supramolecular, presumably microfibrillar organization based on fibronectin and/or fibrillins. Received 3 April 1998; accepted 8 April 1998  相似文献   

16.
Using immunocytochemistry, electrophoresis and immunoblotting, we studied the expression of fast and slow myosin heavy chain isoforms in adult ferret muscles during quiescent and breeding periods. Adult cremaster muscle expressed slow and fast myosin heavy chain in relatively similar amounts during the quiescent period. During the breeding period, the expression of slow myosin heavy chain I, significantly decreased, and fast myosin heavy chain II, was predominant. No alteration of the MHC pattern in EDL and soleus muscles was detected between the quiescent and breeding periods. The possible involvement of androgens and mechanical factors in the regulation of myosin heavy chain expression in adult cremaster muscle is discussed.  相似文献   

17.
The migration of cells is a complex regulatory process which results in the generation of motor forces through the reorganization of the cytoskeleton. Here we present a comparative study of the expression and involvement of myosin in the regulation of the physiological migration of leukocytes and the pathological migration of tumor cells. We show that the involvement of myosin in the migration is distinct in these two cell types. In leukocytes, the activity of non-muscle myosin II is essential for both the spontaneous (matrix-induced) migration and the migration induced by ligands to G protein-coupled receptors, i.e. chemokines and neurotransmitters. In contrast, spontaneous tumor cell migration is largely independent of non-muscle myosin II activity, whereas the norepinephrine-induced migration is completely inhibited by either direct inhibition of non-muscle myosin II or of the kinases phosphorylating the myosin light chain, namely ROCK or the calcium/calmodulin-dependent myosin light-chain kinase.Received 31 August 2004; accepted 26 October 2004  相似文献   

18.
L J Sweeney 《Experientia》1988,44(11-12):930-936
Cardiac development involves a complex integration of subcellular processes into multicellular and, finally, whole organ effects. Until recently it has been difficult to investigate the genetic control of this organ level differentiation of the heart. The proliferation of molecular biology methodologies has provided mechanisms to directly investigate the control of these processes. This article focuses on molecular lines of research on two key areas in cardiac development: the regulation of expression of sarcomeric contractile and regulatory proteins, and atrial natriuretic factor. Molecular approaches are described which have allowed investigators to begin to determine the tissue and stage-specific expression of genes, to locate those genes in the genome, determine their sequences, and to directly investigate the mechanisms controlling their expression.  相似文献   

19.
The biological functions of the more than one hundred genes coding for deubiquitinating enzymes in the human genome remain mostly unknown. The USP25 gene, located at 21q11.2, encodes three protein isoforms produced by alternative splicing. While two of the isoforms are expressed nearly ubiquituously, the expression of the longer USP25 isoform (USP25m) is restricted to muscular tissues and is upregulated during myogenesis. USP25m interacts with three sarcomeric proteins: actin alpha-1 (ACTA1), filamin C (FLNC), and myosin binding protein C1 (MyBPC1), which are critically involved in muscle differentiation and maintenance, and have been implicated in the pathogenesis of severe myopathies. Biochemical analyses demonstrated that MyBPC1 is a short-lived proteasomal substrate, and its degradation is prevented by over-expression of USP25m but not by other USP25 isoforms. In contrast, ACTA1 and FLNC appear to be stable proteins, indicating that their interaction with USP25m is not related to their turnover rate. Received 7 November 2005; received after revision 7 January 2006; accepted 13 January 2006  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号