首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD2-mediated adhesion facilitates T lymphocyte antigen recognition function   总被引:25,自引:0,他引:25  
The CD2 T lymphocyte-surface glycoprotein serves to mediate adhesion between T lymphocytes and their cognate cellular partners which express the specific ligand LFA-3. In addition, CD2 by itself or in conjunction with T-cell receptor stimulation, transduces signals resulting in T-lymphocyte activation. One or both of these functions seems to be physiologically important, given that certain anti-CD2 monoclonal antibodies block T-cell activation and that antigen-responsive memory T cells express a high level of CD2 relative to virgin T cells, which are largely antigen-unresponsive. Nevertheless, the contribution of the individual CD2 functions in T-cell responses has not been independently examined. To this end, human CD2 complementary DNAs encoding an intact LFA-3-binding adhesion domain, but lacking a functional cytoplasmic signal transduction element (CD2trans-), were introduced into an ovalbumin-specific, I-Ad restricted murine T-cell hybridoma. The antigen-specific response of T hybridoma cells expressing human CD2trans- protein was enhanced up to 400% when the human LFA-3 ligand was introduced into the I-Ad expressing murine antigen-presenting cells. In contrast, no augmentation was observed if human LFA-3 was absent or expressed on a third-party cell lacking the I-Ad restriction element. These results directly demonstrate the functional significance of adhesion events mediated between CD2 on the antigen-responsive T lymphocyte and LFA-3 on the presenting cell in optimizing antigen-specific T-cell activation.  相似文献   

2.
D M Altmann  N Hogg  J Trowsdale  D Wilkinson 《Nature》1989,338(6215):512-514
The initiation of a specific immune response is believed to require not only activation through antigen-specific receptors on T cells and B cells but also antigen-independent interactions between accessory molecules. One such molecule is LFA-1, which enhances the avidity of interactions between T cells and antigen-presenting cells, and is possibly involved in signal transduction across the T-cell membrane. Intercellular adhesion molecule-1 (ICAM-1), a surface glycoprotein of relative molecular mass (Mr) 80,000-110,000, has been defined as a ligand for LFA-1, and has been shown to participate in the interaction between T cells and monocytes. The determination of the precise contribution of such accessory molecules to antigen presentation, however, is complicated by the need to analyse against a background of multiple molecular interactions. We have investigated the role of LFA-1/ICAM-1 interactions in antigen presentation directly by quantifying the contribution of ICAM-1 expression to T-cell stimulation using L-cell transfectants that co-express ICAM-1 and HLA-DR. In the case of transfectants expressing modest levels of HLA-DR, co-expression of ICAM-1 is critical for effective HLA class II-restricted and allospecific T-cell activation, pointing to an important role for ICAM-1 in the induction of T-cell responses.  相似文献   

3.
A Peterson  B Seed 《Nature》1987,329(6142):842-846
The human T cell erythrocyte receptor (CD2 antigen) allows thymocytes and mature T cells to adhere to thymic epithelium and target cells through a cell surface protein, LFA-3 (refs 1-6). Monoclonal antibodies recognizing CD2 can either block adhesion or, in certain combinations, induce an antigen-independent T cell activation. We have identified the binding sites for 16 monoclonal antibodies against CD2 by a rapid and generally applicable mutational analysis. The binding sites fall in three discrete regions: antibodies that participate in activation and block erythrocyte adhesion bind to the first region; antibodies that block adhesion bind to the second region; and antibodies that participate in activation but do not block adhesion bind to the third region. A large number of mutations selected for loss of antibody reactivity in the first two regions also weaken the CD2-LFA-3 interaction. Good agreement was observed between mutational lesions blocking LFA-3 binding and lesions blocking binding by activating antibodies, which supports the view that such antibodies induce T cell activation by mimicking the effect of LFA-3 binding. CD2 sequences that participate in LFA-3 binding correspond to immunoglobulin variable region hypervariable sequences when the homologous domains are aligned.  相似文献   

4.
The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3   总被引:15,自引:0,他引:15  
CD2 (known also as T11 (ref. 1), LFA-2 (ref. 2) and the erythrocyte rosette receptor (ref. 3] is a functionally important T lymphocyte surface glycoprotein of relative molecular mass 50,000 to 58,000 (Mr 50-58 K) which appears early in thymocyte ontogeny and is present on all mature T cells. Monoclonal antibodies to CD2 inhibit cytotoxic T-lymphocyte (CTL)-mediated killing by binding to the T lymphocyte and blocking adhesion to the target cell. Such antibodies also inhibit T helper cell responses including antigen-stimulated proliferation, interleukin-2 (IL-2) secretion, and IL-2 receptor expression. Certain combinations of monoclonal antibodies to CD2 epitopes trigger proliferation of peripheral blood T lymphocytes, cytotoxic effector function and expression of IL-2 receptors by thymocytes, resulting in thymocyte proliferation in the presence of exogenous IL-2 (ref. 11). These findings suggest that CD2 can function in signalling as well as being an adhesion molecule. To understand the role of CD2 in T-cell adhesion and activation, it is essential to define its natural ligand. Our previous observation that purified CD2 inhibits rosetting of T lymphocytes with sheep erythrocytes and can be absorbed by sheep erythrocytes suggested it also might bind with detectable affinity to human cells. We now report that CD2 binds to a cell-surface antigen known as lymphocyte function-associated antigen-3 (LFA-3) with high affinity, and can mediate adhesion of lymphoid cells via interaction with LFA-3.  相似文献   

5.
ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells   总被引:60,自引:0,他引:60  
Cell-cell adhesion is essential for many immunological functions. The LFA-1 molecule, a member of a superfamily of adhesion molecules, participates in adhesion which is critical to the function of each of the three major subsets of leukocytes: lymphocytes, monocytes and granulocytes. Putative LFA-1 ligands have been identified functionally in different laboratories using three different monoclonal antibodies that inhibit LFA-1-mediated leukocyte adhesion in particular model systems; however, there may be more than one LFA-1 ligand. We have directly compared the three relevant monoclonal antibodies, and show that each binds to the same molecule, intercellular-adhesion molecule-1 (ICAM-1). Most important, B, T and myeloid cells adhere specifically to purified ICAM-1-coated surfaces; such adhesion has distinctive requirements for Mg2+ and Ca2+. This constitutes biochemical evidence that ICAM-1 functions as a ligand for LFA-1-dependent adhesion by a variety of leukocytes.  相似文献   

6.
D E Staunton  M L Dustin  T A Springer 《Nature》1989,339(6219):61-64
The leukocyte adhesion molecule LFA-1 mediates a wide range of lymphocyte, monocyte, natural killer cell, and granulocyte interactions with other cells in immunity and inflammation. LFA-1 (CD11a/CD18) is a receptor for intercellular adhesion molecule 1 (ICAM-1, CD54), a surface molecule which is constitutively expressed on some tissues and induced on other in inflammation. Induction of ICAM-1 on epithelial cells, endothelial cells and fibroblasts mediates LFA-1-dependent adhesion of lymphocytes. Several lines of evidence have suggested the existence of a second LFA-1 ligand: homotypic adhesion of one cell line was inhibited by a monoclonal antibody to LFA-1, but not by one to ICAM-1; there exists an LFA-1-dependent, ICAM-1-independent pathway of adhesion to endothelial cells; and also, there are some types of target cells in which LFA-1-dependent T-lymphocyte adhesion and lysis are independent of ICAM-1. We have cloned this second ligand, designated ICAM-2, using a novel method for identifying ligands of adhesion molecules. ICAM-2 is an integral membrane protein with two immunoglobulin-like domains, whereas ICAM-1 has five. Remarkably, ICAM-2 is much more closely related to the two most N-terminal domains of ICAM-1 (34% identity) than either ICAM-1 or ICAM-2 is to other members of the immunoglobulin superfamily, demonstrating the existence of a subfamily of immunoglobulin-like ligands that bind the same integrin receptor.  相似文献   

7.
Cell-cell adhesion is essential for many immunological functions, including interaction of cytotoxic T lymphocytes (CTLs) with their targets. We have explored CTL-target interactions using well-characterized cloned human CTLs. Conjugate formation between these CTLs and many antigen-negative targets is almost as efficient as with specific target cells, but does not lead to target-cell lysis. Thus, on specific target cells, adhesion by antigen-independent pathways may occur concurrently with or precede antigen recognition. The molecules LFA-1, CD2 (T11, LFA-2) and LFA-3 have been shown to be involved in human CTL conjugation with and lysis of specific target cells. Here we describe monoclonal antibody inhibition studies using individual monoclonal antibodies and mixes which demonstrate (1) that LFA-1, CD2 and LFA-3 are involved in antigen-independent conjugate formation; and (2) suggest that CD2 and LFA-3 are involved in one pathway and LFA-1 in another. We confirmed the existence of distinct pathways by the demonstration that LFA-1-dependent adhesion requires divalent cations and is temperature-sensitive whereas CD2- and LFA-3-dependent adhesion does not require divalent cations and is temperature-insensitive. Together with previous data, our studies suggest that CD2 on the effector interacts with LFA-3 as its ligand on targets.  相似文献   

8.
The co-ordinated function of effector and accessory cells in the immune system is assisted by adhesion molecules on the cell surface that stabilize interactions between different cell types. Leukocyte function-associated antigen 1 (LFA-1) is expressed on the surface of all white blood cells and is a receptor for intercellular adhesion molecules (ICAM) 1 and 2 (ref. 3) which are members of the immunoglobulin superfamily. The interaction of LFA-1 with ICAMs 1 and 2 provides essential accessory adhesion signals in many immune interactions, including those between T and B lymphocytes and cytotoxic T cells and their targets. In addition, both ICAMs are expressed at low levels on resting vascular endothelium; ICAM-1 is strongly upregulated by cytokine stimulation and plays a key role in the arrest of leukocytes in blood vessels at sites of inflammation and injury. Recent work has indicated that resting leukocytes express a third ligand, ICAM-3, for LFA-1 (refs 11, 12). ICAM-3 is potentially the most important ligand for LFA-1 in the initiation of the immune response because the expression of ICAM-1 on resting leukocytes is low. We report the expression cloning of a complementary DNA, pICAM-3, encoding a protein constitutively expressed on all leukocytes, which binds LFA-1. ICAM-3 is closely related to ICAM-1, consists of five immunoglobulin domains, and binds LFA-1 through its two N-terminal domains.  相似文献   

9.
The induction of an ensemble of adhesion molecules on endothelial cells by inflammatory cytokines is likely to be crucial to the differential migration of T-lymphocyte subsets into inflammatory sites. Two molecular pathways involving the VLA-4 and LFA-1 integrins are known to mediate T-cell adhesion to activated endothelium. Here we show that a third pathway involving the rapidly inducible endothelial cell-surface adhesion molecule ELAM-1 contributes to the binding of resting CD4+ T cells to IL-1-induced human endothelial cells. All three pathways contribute to the greater adhesion to endothelium of memory T cells than naive T cells. There are two unique features of T-cell adhesion to purified ELAM-1: first, ELAM-1 exclusively mediates adhesion of memory T cells; second, memory T-cell binding to ELAM-1 is independent of acute activation events that regulate integrin-mediated adhesion. Thus, ELAM-1 may be of primary importance in the initial attachment of memory T cells to inflamed endothelium in vivo and to the preferential migration of memory T cells into tissue and inflammatory sites.  相似文献   

10.
A M O'Rourke  M F Mescher 《Nature》1992,358(6383):253-255
In addition to the antigen-specific T-cell receptor (TCR), T cells bear an array of 'accessory' molecules that can contribute to stable adhesion to the antigen-bearing cell and provide costimulatory signals. For several of these, T-cell adhesion to the ligand can be activated by TCR-dependent signalling (a signal from the TCR primes the coreceptor to bind to its ligand). It is unclear whether the individual coreceptors share common mechanisms of priming and cosignalling, and perhaps act in a redundant manner, or whether they act in a distinct way and contribute uniquely to the activation process. We report here the use of isolated alloantigen, class I proteins and fibronectin ligands to show that coreceptors on cytotoxic T lymphocytes are activated sequentially and deliver distinct biochemical signals on binding to their ligands. TCR engagement activates CD8 by a protein tyrosine kinase-dependent pathway, and CD8 then acts as a signal for initiation of polyphosphoinositide hydrolysis on binding to class I. In contrast, activated adhesion to fibronectin does not initiate polyphosphoinositide hydrolysis, but amplifies hydrolysis once it has been initiated. Thus, cytotoxic T-lymphocyte activation involves a TCR-initiated cascade of adhesion and signalling events leading to response.  相似文献   

11.
The lymphocyte function-associated molecule LFA-1 (CD11a/CD18) plays a key part in lymphocyte adhesion. Lymphocytes do not adhere spontaneously; activation of protein kinase C (PKC) by phorbol esters, however, gives rise to strong LFA-1-dependent adhesion, indicating that activation of LFA-1 is required to induce cell adhesion. We have now investigated whether the functionally important CD2 and CD3 surface structures on T lymphocytes are involved in the activation of LFA-1. The stimulation of these molecules, which causes activation of PKC, strongly promoted LFA-1-dependent adhesion. Furthermore, we demonstrate by using cells from an LFA-1-deficient patient that this enhanced lymphocyte adhesion is caused by activation of the LFA-1 molecule and not by activation of its ligands. LFA-1 was persistently activated by triggering through CD2 but only transiently by triggering through CD3. We postulate that CD2 and CD3 can differentially regulate the affinity of LFA-1 for its ligands by modulating its molecular conformation through PKC-dependent mechanisms.  相似文献   

12.
Cell-cell adhesion mediated by CD8 and MHC class I molecules   总被引:30,自引:0,他引:30  
CD4 and CD8 are cell-surface glycoproteins expressed on mutually exclusive subsets of peripheral T cells. T cells that express CD4 have T-cell antigen receptors that are specific for antigens presented by major histocompatibility complex class II molecules, whereas T cells that express CD8 have receptors specific for antigens presented by MHC class I molecules (reviewed in ref. 1). Based on this correlation and on the observation that anti-CD4 and anti-CD8 antibodies inhibit T-cell function, it has been suggested that CD4 and CD8 increase the avidity of T cells for their targets by binding to MHC class II or MHC class I molecules respectively. Also, CD4 and CD8 may become physically associated with the T-cell antigen receptor, forming a higher-affinity complex for antigen and MHC molecules, and could be involved in signal transduction. Cell-cell adhesion dependent CD4 and MHC II molecules has recently been demonstrated. To determine whether CD8 can interact with MHC class I molecules in the absence of the T-cell antigen receptor, we have developed a cell-cell binding assay that measures adhesion of human B-cell lines expressing MHC class I molecules to transfected cells expressing high levels of human CD8. In this system, CD8 and class I molecules mediate cell-cell adhesion, showing that CD8 directly binds to MHC class I molecules.  相似文献   

13.
The CD4 T-cell surface antigen is an integral membrane glycoprotein of relative molecular mass 55,000 which binds class II major histocompatibility complex (MHC) molecules expressed on antigen presenting cells (APCs). It is thought to stabilize physical interactions between T cells and APCs (for a review, see ref. 1). Evidence is accumulating that suggests that CD4 can transduce an independent signal during T-cell activation. It has recently been shown that CD4 expressed on human and murine T cells is physically associated with the Src-related tyrosine protein kinase p56lck (refs 7, 8). These results indicate that CD4 can function as a signal transducer and suggest that tyrosine phosphorylation events may be important in CD4-mediated signalling. Here, we present evidence that cross-linking of the CD4 receptor induces a rapid increase in the tyrosine-specific protein kinase activity of p56lck and is associated with the rapid phosphorylation of one of the subunits (zeta) of the T-cell receptor complex on tyrosine residues. These data provide direct evidence for a specific CD4 signal transduction pathway that is mediated through p56lck and suggest that some of the tyrosine phosphorylation events detected during antigen-mediated T-cell activation may result from signalling through this surface molecule.  相似文献   

14.
Activation of resting T lymphocytes is initiated by the interaction of cell-surface receptors with their corresponding ligands. In addition to activation through the CD3 (T3)-Ti antigen-receptor complex, recent experiments have demonstrated induction of T-cell proliferation through the CD2 (T11) molecule, traditionally known as the erythrocyte(E)-receptor, through which T cells can bind red blood cells (RBC). This 'alternative pathway' of T-cell activation was observed in vitro in response to combinations of anti-CD2 monoclonal antibodies (mAbs) that bind to distinct epitopes of CD2, such as mAbs against T11(2) plus T11(3). The physiological importance of this activation pathway can be assessed only by studying the effects of a naturally occurring ligand of CD2 on T-cell activation. We have recently described such a ligand, a glycoprotein of apparent relative molecular mass 42,000 (Mr 42K) that is expressed on all blood cells and some other tissues. Here we demonstrate that binding of this cell surface molecule, termed T11 target structure or T11TS, to CD2 (T11) induces reactivity in resting T cells to a mitogenic stimulus given by a mAb to the T11(3) determinant or by submitogenic concentrations of anti-T11(2+3) mAbs. Thus, one of the signals required for T-cell activation through the alternative pathway is provided by the interaction of CD2 with a naturally occurring complementary cell-surface molecule.  相似文献   

15.
T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1   总被引:176,自引:0,他引:176  
M L Dustin  T A Springer 《Nature》1989,341(6243):619-624
Effective interaction between T cells and their targets requires that recognition of specific antigen be coordinated with increased cell-cell adhesion. We show that antigen-receptor cross-linking increases the strength of the adhesion mechanism between lymphocyte function-associated molecule-1 (LFA-1) and intercellular adhesion molecules (ICAMs), with intracellular signals transmitted from the T-cell antigen receptor to the LFA-1 adhesion molecule. The increase in avidity is rapid and transient, providing a dynamic mechanism for antigen-specific regulation of lymphocyte adhesion and de-adhesion.  相似文献   

16.
D Simmons  M W Makgoba  B Seed 《Nature》1988,331(6157):624-627
Antigen-specific cell contacts in the immune system are strengthened by antigen-nonspecific interactions, mediated in part by lymphocyte-function associated (LFA) antigens. The LFA-1 antigen is widely expressed on cells of haematopoietic origin and is a major receptor of T cells, B cells and granulocytes. LFA-1 mediates the leukocyte adhesion reactions underlying cytolytic conjugate formation, helper T-cell interactions, and antibody-dependent killing by natural killer cells and granulocytes. Recently, ICAM-1 (intercellular adhesion molecule-1) has been defined as a ligand for LFA-1. Monoclonal antibodies to ICAM-1 block T lymphocyte adhesion to fibroblasts and endothelial cells and disrupt the interaction between cytotoxic T cells and target cells. In addition, purified ICAM-1 reconstituted into artificial membranes binds LFA-1+ cells. ICAM-1 is found on leukocytes, fibroblasts, epithelial cells and endothelial cells and its expression is regulated by inflammatory cytokines. LFA-1 has been placed in the integrin family of cell surface receptors by virtue of the high sequence similarity between the LFA-1 and integrin beta chains. The adhesion ligands of the integrin family are glycoproteins bearing the Arg-Gly-Asp (RGD) sequence motif, for example, fibronectin, fibrinogen, vitronectin and von Willebrand factor. Here we show that a complementary DNA clone ICAM-1 contains no RGD motifs, but instead is homologous to the neural cell adhesion molecule NCAM.  相似文献   

17.
T lymphocytes can be activated by various stimuli directed either against the T-cell antigen receptor-CD3 antigen complex (Ti-CD3) or the CD2 molecule; see ref. 1 for a review. Activation signals generated by antigen binding to the antigen-specific alpha/beta heterodimer (Ti) are thought to be transduced via the invariant CD3 gamma, epsilon and delta chains, and the associated zeta and eta subunits. The physiological role of the interaction of CD2 with its homologous cell-surface associated ligand LFA-3 remains to be fully elucidated. It has been suggested that CD2 regulates an antigen-independent pathway of activation or that signals delivered via CD2 are an integral part of the antigen-specific pathway. Several recent studies have indicated a requirement for the Ti-CD3 complex in CD2 signalling. Thus, mutant T-cell lines expressing CD2, but not Ti-CD3, on the cell surface cannot be activated via the CD2 molecules. Functional interaction between the Ti-CD3 complex and the CD2 antigen suggests that these T-lymphocyte cell-surface structures are physically associated. Here we use a digitonin-based solubilization procedure to explore this possibility and show that 40% of the cell-surface CD2 molecules can be specifically co-precipitated in association with the Ti-CD3 complex.  相似文献   

18.
Schwartz JC  Zhang X  Fedorov AA  Nathenson SG  Almo SC 《Nature》2001,410(6828):604-608
Regulation of T-cell activity is dependent on antigen-independent co-stimulatory signals provided by the disulphide-linked homodimeric T-cell surface receptors, CD28 and CTLA-4 (ref. 1). Engagement of CD28 with B7-1 and B7-2 ligands on antigen-presenting cells (APCs) provides a stimulatory signal for T-cell activation, whereas subsequent engagement of CTLA-4 with these same ligands results in attenuation of the response. Given their central function in immune modulation, CTLA-4- and CD28-associated signalling pathways are primary therapeutic targets for preventing autoimmune disease, graft versus host disease, graft rejection and promoting tumour immunity. However, little is known about the cell-surface organization of these receptor/ligand complexes and the structural basis for signal transduction. Here we report the 3.2-A resolution structure of the complex between the disulphide-linked homodimer of human CTLA-4 and the receptor-binding domain of human B7-2. The unusual dimerization properties of both CTLA-4 and B7-2 place their respective ligand-binding sites distal to the dimer interface in each molecule and promote the formation of an alternating arrangement of bivalent CTLA-4 and B7-2 dimers that extends throughout the crystal. Direct observation of this CTLA-4/B7-2 network provides a model for the periodic organization of these molecules within the immunological synapse and suggests a distinct mechanism for signalling by dimeric cell-surface receptors.  相似文献   

19.
Untransformed T-cell clones maintained in culture are dependent on signals transmitted through their antigen receptors (Ti; alpha and beta chains associated with the CD3 molecules) for growth and effector function. For cytolytic T cells (CTL), Ti stimulation also activates the killing machinery and induces synthesis of gamma interferon (IFN-gamma) messenger RNA and IFN-gamma secretion. The Thy-1 molecule, expressed on all murine cells of the T-cell lineage, has been suggested to function in transmembrane signalling, based on the ability of some anti-Thy-1 monoclonal antibodies (mAb) to activate T cells. Recently, it was suggested that Thy-1 could function as a signal-transduction molecule when expressed in B-cell lymphomas after transfection of the gene, leading to speculation that the molecule was part of an activation pathway independent of the Ti/CD3 structures. Here we report the immunoselection of a variant CTL clone which has lost expression of mRNA for the alpha-chain of the Ti. The Ti- variant was defective in lectin-mediated activation whether measured by increase in intracytoplasmic Ca2+, CTL effector function or IFN-gamma synthesis. The variant, which expressed normal levels of Thy-1, was also unresponsive to Thy-1 mAb activation as measured by IFN-gamma secretion, whereas it responded to calcium ionophore plus phorbol ester. These results indicate that in a non-transformed, functional mature T-cell, Thy-1 mediated signalling is not an alternative to, but might depend on elements associated with the Ti/CD3-mediated T-cell activation pathway.  相似文献   

20.
Expression and function of CD4 in a murine T-cell hybridoma   总被引:33,自引:0,他引:33  
The CD4 (T4) antigen was originally described as a phenotypic marker specific for helper T cells, and has recently been shown to be the receptor for the human immunodeficiency virus (HIV). Functional studies using monoclonal antibodies directed at CD4 and major histocompatibility complex (MHC) class II molecules led to the suggestion that CD4 binds to the MHC class II molecules expressed on stimulator cells, enhancing T-cell responsiveness by increasing the avidity of T cell-stimulator cell interaction and/or by transmitting a positive intracellular signal. But recent evidence that antibodies to CD4 inhibit T-cell responsiveness in the absence of any putative ligand for CD4 has been interpreted as suggesting that antibody-mediated inhibition may involve the transmission of a negative signal via the CD4 molecule instead. We have infected a murine T-cell hybridoma that produces interleukin 2 (IL-2) in response to human class II HLA-DR antigens with a retroviral vector containing CD4 cDNA. The resulting CD4-expressing hybridoma cell lines produce 6- to 20-fold more IL-2 in response to HLA-DR antigens than control cell lines. Furthermore, when antigen levels are suboptimal, the response of the cell lines is entirely CD4-dependent. The data presented here clearly demonstrate that CD4 can enhance T-cell responsiveness and may be crucial in the response to suboptimal levels of antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号