首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Evidence is clear that each melatonin-producing cell in the chick pineal gland contains a circadian oscillator that continues to function in vitro, resulting in a prominent day/night rhythm of melatonin secretion. The aim of the present investigation was to examine whether the circadian organization of the gland has an electrophysiological correlate. To this end, single-cell recordings were made from isolated chick pineal glands kept in vitro under a light/dark cycle of 12:12 h, identical to that of the donors, or under continuous light or darkness. In all the glands investigated, a very small percentage of cells exhibited sodium-dependent spontaneous spike activity with a mean frequency below 10 Hz. The cells revealed rhythms with periods in the 15- to 60-min range and, additionally, exhibited ultradian and circadian rhythms in firing, with periods of 10.75+/-1.06 h and 26.25+/-1.26 h (mean +/- standard deviation), respectively. Most of the cells exhibited circadian rhythms with higher activity during daytime than at night, showing that the electrical activity and melatonin rhythm were out of phase. Under constant light or darkness, the circadian rhythm persisted. When the light/dark cycle of the donors was phase-advanced by 5 h, the cells revealed complete entrainment. We discuss whether the cells, albeit small in number, could function as a secondary ultradian/circadian oscillator contributing to the ultradian/circadian organization of the gland.  相似文献   

2.
Summary Bright light (2000–3000 lux) of sufficient intensity to suppress human melatonin secretion, acts as a strong zeitgeber in the entrainment of circadian rhythms in man. In polar conditions, light of this intensity is not experienced for several weeks during the winter. The entrainment of human circadian rhythms, in particular that of melatonin, is clearly of interest in these circumstances. Urinary 6-hydroxy melatonin sulphate (aMT6s) is a good index of melatonin secretion in man. In a limited study of seven male volunteers living on an Antarctic base the overall 24-h rhythm of aMT6s excretion was maintained at four different times of year (spring, summer, autumn and winter) and no significant seasonal effects were noted. Cortisol excretion, appeared to be markedly affected by the season although other factors such as social and environmental stress cannot be discounted. These observations suggest that in the absence of a strong light-dark cycle melatonin production may be entrained by other factors.  相似文献   

3.
The chick pineal gland exhibits circadian rhythms in melatonin synthesis under in vivo and in vitro conditions. A daily rhythm of melatonin production was first detectable in pineal glands isolated from chick embryos at embryonic day 16 and incubated under a LD cycle. All pineal glands isolated from 17-day-old and older embryos were rhythmic while no gland isolated at embryonic day 14 and 15 exhibited a daily rhythm in melatonin synthesis. Melatonin production in static cultures of embryonic pineal cells was rhythmic over 48 h if the cells were kept under a LD cycle. When embryonic pineal cells were incubated in constant darkness the rhythm in melatonin production was damped within 48 h. These results suggest that chick pineal cells from embryonic day 16 onwards are photosensitive but that the endogenous component of the melatonin rhythm is not completely developed at that age. A soluble analogue of cAMP stimulated and norepinephrine inhibited melatonin synthesis in cultured embryonic pineal cells. These findings indicate that the stimulatory and inhibitory pathways controlling melatonin synthesis in the mature pineal gland are effective in pineal cells isolated from chick embryos at least 2 days before hatching.  相似文献   

4.
Summary Pineal structural and biochemical adaptations in lanternfishes included: 1) few photoreceptor outer segment discs; 2) conventional synapses between photoreceptors and pineal neurons; and 3) low levels (0–60 pg/pineal) of serotonin compared to those (>1.0 ng/pineal) in the goldfish pineal organ. These findings suggest reduced photosensory and/or neuroendocrine functions in these deep-sea fishes.  相似文献   

5.
A melatonin rhythm was observed in the pineals of 18-day-old chick embryos incubated under a light-dark regime of 186 h. A low pineal melatonin content was found during the light phase of the day. Concentrations started to increase 2 h after dark onset and reached maximum levels after 4 h of darkness. The amplitude of the pineal melatonin rhythm increased considerably after 2 days and night-time concentrations in 20-day-old embryos were more than 5 times higher than in 18-day-old ones. Significant day/night differences in melatonin production were found both in pineals and eyes. Exposure of eggs to 1 h of light during the dark period decreased the high melatonin concentrations in the eyes but not in the pineals of the 20-day-old chick embryo. The results suggest that in this precocial bird at least part of the circadian system may already operate during embryonic life.  相似文献   

6.
Summary Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

7.
Melatonin and circadian control in mammals   总被引:5,自引:0,他引:5  
S M Armstrong 《Experientia》1989,45(10):932-938
Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

8.
Summary The direction of change in daylength provides the seasonal time cue for the timing of puberty in many mammalian species. The pattern of melatonin secretion from the pineal gland transduces the environmental light-dark cycle into a signal influencing the neuroendocrine control of sexual maturation. The change in duration of nocturnal melatonin secretion is probably the key feature of the melatonin signal which conveys daylength information. This information may also be used by neuroendocrine axes controlling seasonal changes in pelage colour, growth and metabolism. The mechanism of action of melatonin on neuroendocrine pathways is unknow. Although the ability to synthesize and secrete melatonin in a pattern that reflects the duration of the night may not occur until the postnatal period, the rodent and ovine foetus has the ability to respond in utero to photoperiodic cues to which its mother is exposed in late gestation. Transplacental passage of maternal melatonin is likely to be the mechanism by which photoperiodic cues reach the foetus. Species which do not exhibit seasonal patterns of puberty, such as the human, also secrete melatonin in a pattern which reflects the environmental light-dark cycle, but they do not respond reproductively to the seasonal melatonin information.  相似文献   

9.
Pineal melatonin rhythms and the timing of puberty in mammals   总被引:2,自引:0,他引:2  
F J Ebling  D L Foster 《Experientia》1989,45(10):946-954
The direction of change in daylength provides the seasonal time cue for the timing of puberty in many mammalian species. The pattern of melatonin secretion from the pineal gland transduces the environmental light-dark cycle into a signal influencing the neuroendocrine control of sexual maturation. The change in duration of nocturnal melatonin secretion is probably the key feature of the melatonin signal which conveys daylength information. This information may also be used by neuroendocrine axes controlling seasonal changes in pelage colour, growth and metabolism. The mechanism of action of melatonin on neuroendocrine pathways is unknown. Although the ability to synthesize and secrete melatonin in a pattern that reflects the duration of the night may not occur until the postnatal period, the rodent and ovine foetus has the ability to respond in utero to photoperiodic cues to which its mother is exposed in late gestation. Transplacental passage of maternal melatonin is likely to be the mechanism by which photoperiodic cues reach the foetus. Species which do not exhibit seasonal patterns of puberty, such as the human, also secrete melatonin in a pattern which reflects the environmental light-dark cycle, but they do not respond reproductively to the seasonal melatonin information.  相似文献   

10.
Summary Sham-pinealectomy, performed under different light conditions in newborn and adult rats, is followed by changes of pineal activity resulting in variations of melatonin content. The pineal glands of rats sham-operated under white light produce significantly less melatonin. In contrast, glands of rats operated on under red light show a melatonin content corresponding to that of intact rats. This result implies that normal white light causes a disturbance in melatonin production by a non-retinal pathway.  相似文献   

11.
Four days following an 8-h advance of the light-dark cycle, the circadian rhythms in the pineal N-acetyltransferase activity and melatonin content reappeared in 7-week-old rats, but were still abolished in 24-month-old animals.  相似文献   

12.
Summary Four days following an 8-h advance of the light-dark cycle, the circadian rhythms in the pineal N-acetyltransferase activity and melatonin content reappeared in 7-week-old rats, but were still abolished in 24-month-old animals.  相似文献   

13.
Summary The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a multioscillator circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

14.
Vertebrate circadian rhythms: Retinal and extraretinal photoreception   总被引:3,自引:0,他引:3  
Summary ERRs Both the pineal and the SCN are elements of the vertebrate multioscillator system although the relative importance of these 2 areas probably varies between, and possibly within, the different vertebrate classes. Extraretinal photoreception is a universal feature of submammalian vertebrates, and possibly of neonatal mammals, but is absent in adult mammals. Although the pineal systems of sumammalian vertebrates are photosensitive, the pineal system has been directly implicated as an extraocular site for the perception of entraining light cycles only in amphibians. In all other submammalian vertebrates extraretinal entrainment can occur in the absence of the pineal system although it is certainly conceivable that the pineal system may act as an alternate route of photoreception. These extraretinal-extrapineal receptors are located within the brain but the exact location(s) of these receptors within the brain is unknown. The hypothalamus would be likely area for this extraretinal photoreception, however, for several reasons: 1. Neurophysiological studies have identified light sensitive neurons in the frog's hypothalamus43. 2. The avian hypothalamus is a site of photoperiodic photoreception100–103. 3. The only other light sensitive structures known in vertebrates—the pineal system and the lateral eyes—are all derived embryologically from the hypothalamus. 4. The hypothalamus appears to be the site of a circadian clock and there may be advantages in having the photoreceptors and the clock anatomically close to one another. These considerations, of course, do not exclude the possibility that other brain areas may be involved as well. The reason behind the loss of extraretinal photoreception in mammals is uncertain. The shift to exclusive retinal photoreception in mammals may have been dictated by the extensive reorganization that occurred during the evolution of the mammalian brain. Or, perhaps, the increased size of the mammalian skull and overlying tissue made direct photoreception difficult and necessitated a shift to retinal photoreception. The persistence of extraretinal photoreceptors in submammalian vertebrates, however, underscores their importance in the sensory repertoire of vertebrates.  相似文献   

15.
H Underwood 《Experientia》1990,46(1):120-128
The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a 'multioscillator' circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

16.
Summary The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a multioscillator circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

17.
Bright light (2000-3000 lux) of sufficient intensity to suppress human melatonin secretion, acts as a strong zeitgeber in the entrainment of circadian rhythms in man. In polar conditions, light of this intensity is not experienced for several weeks during the winter. The entrainment of human circadian rhythms, in particular that of melatonin, is clearly of interest in these circumstances. Urinary 6-hydroxy melatonin sulphate (aMT6s) is a good index of melatonin secretion in man. In a limited study of seven male volunteers living on an Antarctic base the overall 24-h rhythm of aMT6s excretion was maintained at four different times of year (spring, summer, autumn and winter) and no significant seasonal effects were noted. Cortisol excretion, appeared to be markedly affected by the season although other factors such as social and environmental stress cannot be discounted. These observations suggest that in the absence of a strong light-dark cycle melatonin production may be entrained by other factors.  相似文献   

18.
During the last decade we have learned much on physiological changes in the secretion of the pineal hormone melatonin (MLT) in man. Reportedly, there is little or no MLT secreted before age 3 months. Then MLT production commences, becmes circadian, and reaches highest nocturnal levels at the age of 1–3 years. During all of childhood nocturnal peak levles drop progressively by 80% until adult levels are reached. This alteration appears to be the consequence of increasing body size in face of constant MLT production during childhood. The biological significance of this MLT alteration is presently unknown. Because of conceptual considerations, major depressive syndrome (MDS) and seasonal affective disorder (SAD) have been in the focus of pineal research for several years. Although in these disorders alterations in MLT levels could not be substantiated, light therapy, a consequence of this research, was discovered as an effective treatment for SAD and perhaps for MDS. In addition, there is some recent evidence for low MLT levels in schizophrenia. Finally, the potential effect of MLT in neuroimmunoendocrine interactions is presently explored. Reportedly, in vitro studies and animal experiments give evidence for a modulatory role of MLT in the immune response. However, the exact way of this possible action of MLT remains to be clarified. Clinical studies are too scant for a meaningful estimation of MLT's involvement in human neuroimmunoendocrine interactions.  相似文献   

19.
A melatonin rhythm was observed in the pineals of 18-day-old chick embryos incubated under a light-dark regime of 18: 6 h. A low pineal melatonin content was found during the light phase of the day. Concentrations started to increase 2 h after dark onset and reached maximum levels after 4 h of darkness. The amplitude of the pineal melatonin rhythm increased considerably after 2 days and night-time concentrations in 20-day-old embryos were more than 5 times higher than in 18-day-old ones. Significant day/night differences in melatonin production were found both in pineals and eyes. Exposure of eggs to 1 h of light during the dark period decreased the high melatonin concentrations in the eyes but not in the pineals of the 20-day-old chick embryo. The results suggest that in this precocial bird at least part of the circadian system may already operate during embryonic life.  相似文献   

20.
Summary Tryptophanhydroxylase has been demonstrated in the human pineal gland. The enzyme activity was 3–6 times greater than that of homogenates from cortical areas of human brain. The presence of tryptophan hydroxylase in the pineal gland implies that this organ is not dependent on the transport of 5-hydroxytryptophan but is able to synthesize this precursor of melatonin.This work was supported by grants from the Medical Faculty, University of Lund and the Swedish Cancer Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号