共查询到17条相似文献,搜索用时 78 毫秒
1.
本文针对单一原材料下料问题,讨论了如何在合理的时间内求得一维和二维实用下料问题的较优解。我们实现的是一种改进的以模式为导向的下料方案。以模式为导向的下料方法是相对于以需求为导向的下料方法而言的,即把几种零件组合进行下料,一次切割可得到不同规格的零件,以达到节省原材料的目的。我们的改进是引入了动态权值,具体来说,依据各零件的完成时间要求,赋给每种零件一个权值,而且这个权值会随着下料的进行而不断改变,以调整下料时零件的优先次序。引入动态权值后,不仅能解决时限问题,而且能优化搜索过程。在搜索下料方案的过程中,一维主要采用回溯法搜索部分状态空间,从中找出较优解;二维情形,观察到各种零件的长度比原料的宽度大很多,所以只能按原料的长边方向切割零件的长边,我们运用二叉树前序遍历法去寻找较优解。求得一维问题的下料结果是:需要804块原料,61种下料方式,废料总长度为37012mm,能保证任务按时完成。求得二维问题的解答:需要472块原料,52种下料方式,废料总长度为7340880mm^2,能保证任务按时完成。本模型具有操作简便,求解速度快,适应性好等优点,稍稍修改一些初始值就可以适应新的实际情况。算法是用编程来实现的。 相似文献
2.
型材优化下料的混合遗传算法 总被引:5,自引:1,他引:5
在传统遗传算法的基础上,引入FFD、BF近似算法的思想,建立了该类问题的求解算法模型,对求解过程进行了分析,并给出了一个钢结构项目的下料算例。实际使用表明,该方法的效果是令人满意的。 相似文献
3.
介绍了一维下料问题的下料方式,采用计算机自动生成相应的线性规划数学模型,给出了最优下料方案的求解方法。 相似文献
4.
5.
基于基因群体的一维优化下料 总被引:1,自引:0,他引:1
针对一维优化下料问题,将基于群体的编码方法与遗传算法相结合,设计了一种适用于一维优化下料问题的编码方法,修改了经典遗传算子的操作方法,提出了降序最佳置换方法(BRD).引入最佳配合(BF)、优先配合降序(FFD)局部搜索算法,建立了求解一维优化下料问题的复合遗传算法.应用结果显示,本文方法的效果是令人满意的. 相似文献
6.
本文论述了铁塔制造中角钢优化下料系统设计思想与算法的确定,按照本文论述的零件分组原则求出下料方式,并运用线性规划原理确定一套合理的角钢优化下料算法。 相似文献
7.
一维下料优化的一种新算法 总被引:9,自引:0,他引:9
针对一维下料优化问题,提出了一种基于启发式多级序列线性优化思想的新算法,即将下料优化问题转化为多级序列线性优化问题求解.每级求解时,在当前可行的下料方式中选择最优的一种进行下料。不断重复此操作。直到所有剩余的坯料数目均减小至零为止.原问题的最优解就是各个序列优化问题所求得的最优下料方式的总合.计算表明,与目前常用的整数线性规划或遗传算法相比较.该算法有结构简明、计算速度快、节材效果好的优点. 相似文献
8.
9.
10.
根据旅行商问题(TSP)的邻域搜索算法的思想,提出了型材下料问题的一种优化算法.该算法避免了求解大量下料方式及求解大规模整数规划的复杂问题.最后给出了一个实际例子,表明该方法是可行的. 相似文献
11.
张文俊 《科技情报开发与经济》2006,16(16):178-179
“下料问题”在工程技术和工业生产中有着重要和广泛的应用。解决此问题的经典方法需要很大的计算量,为了减少计算量,提出基于块组合的树形表示和一种很好被采用的遗传算法,即在使用树形表示切割方式的同时也结合别的不同的切割方式,并通过组合交叉、变异算子来实现混合切割。最后提出了这种方法的实现形式。 相似文献
12.
从线性整数规划谈一维下料问题 总被引:1,自引:0,他引:1
一维下料问题是运筹学的一个经典NP-hard问题,在生产中普遍存在.优化下料可以提高原材料的利用率, 是企业增加经济效益的途径之一.从线性整数规划开始讨论了下料问题的各种模型,提出了一些需要改进的问题, 介绍了目前该问题研究的热点. 相似文献
13.
14.
一维下料问题的自适应广义粒子群优化求解 总被引:1,自引:0,他引:1
针对现有粒子群优化算法在求解组合优化问题时粒子速度迭代难以定义的问题,首先将粒子群优化算法与遗传算法相结合,利用交叉算子、变异算子,提出一种广义粒子群优化算法来求解一维下料问题;然后引入模拟退火算法作为自适应策略,避免算法陷入局部最优.仿真实验结果表明,采用自适应广义粒子群优化算法求解一维下料问题具有高效性和鲁棒性. 相似文献
15.
针对标准遗传算法在解决优化问题中存在的问题,提出了改进标准遗传算法的退火遗传算法,并把该算法应用于一维最优切割问题上。通过与标准遗传算法求解一维切割问题的比较,验证了退火遗传算法的有效性。 相似文献
16.
17.
应用三块排样方式求解二维下料问题 总被引:2,自引:0,他引:2
本文采用顺序价值修正框架和三块排样方式求解二维下料问题。该框架顺序生成排样方案中的各个排样方式(排样图),用每个排样方式满足部分毛坯的需求,直到满足全部需求为止;动态调整毛坯价值,使毛坯价值趋于合理;多次迭代生成多个不同的排样方案,实现优选。采用的三块排样方式通过不完全枚举法生成,其中最多包含三种毛坯,从而有利于简化下料工艺。通过与线性规划算法比较,说明在毛坯需求量较小的情况下,本文算法能有效减少板材消耗量。 相似文献