首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 567 毫秒
1.
基于年总成本(TAC)分析方法,对离子液体萃取催化乙酸甲酯和丁醇转酯反应的工艺流程进行了模拟。以年总成本最低为目标,探索了经济最优时的精馏塔压力、精馏塔塔板数和进料位置。结果表明,当反应精馏塔的压力为80.8kPa、塔板数为37、丁醇和乙酸甲酯分别从第10块和第35块塔板进料时,年总成本最低。采用新设计工艺可节约成本24.4%,而甲醇和乙酸丁酯的产品纯度仍然保持在97.4%和99.6%以上,为实际反应工艺的节能优化提供了有价值的理论依据。  相似文献   

2.
应用AspenPlus11.1对乙酸异丁酯反应精馏生产过程进行模拟。得到了各过程参数的最佳理论值:最佳进料温度为20℃,最佳回流比为2,最佳进料位置为第四块塔板,同时,模拟获得了反应精馏塔的温度分布与浓度分布(液相)。  相似文献   

3.
基于年度总成本最小化的分析方法,计算优化了正丙醇与乙酸甲酯酯交换反应生成乙酸正丙酯的反应精馏过程。提出一种离子液体(1-乙基-3-甲基咪唑醋酸盐)作为萃取剂用于乙酸甲酯与甲醇产物分离的新工艺,以代替无萃取剂的常规精馏塔。考察了反应精馏塔的提馏段、精馏段,反应段的塔板数、回流比以及萃取塔进料位置和萃取剂量对新工艺能耗和费用的影响。与传统工艺比较结果表明,新工艺节省再沸器的能耗和操作费用约30%。  相似文献   

4.
背包式反应器与精馏塔耦合合成醋酸甲酯的模拟   总被引:2,自引:0,他引:2  
针对背包式反应器与精馏塔耦合过程循环流股多,模拟计算收敛难度大的缺点,在Aspen Plus的Rad Frac模型中引入Murphree板效率,仅用一个精馏塔模型就描述了这个复杂耦合过程的模拟模型。在固定精馏塔塔板数的情况下,讨论了背包反应器个数和间隔位置、进料位置、回流比和催化剂量等因素对醋酸甲酯合成的影响。初步探索了反应能力和分离能力的匹配问题。模拟结果表明,当采用5个背包反应器,反应器之间间隔4块分离塔板的配置时,在适宜条件下醋酸总转化率可达到96.3%。  相似文献   

5.
使用Aspen Plus11.1模拟甲醇与异丁烯反应精馏制备丙酸乙酯的过程研究,对进料温度、进料位置、回流比进行了灵敏度分析,得到了最佳工艺参数为:最佳进料温度是70℃;最佳进料醇烯摩尔比是3:2;最佳进料位置是第10块塔板;最佳回流比是1.0.模拟得到了反应精馏塔的温度和浓度分布,为更好地指导丙酸乙酯的工业生产提供参考.  相似文献   

6.
利用Aspen Plus流程模拟软件对煤制乙二醇副产物杂醇油回收工艺进行模拟研究,选用非随机双液体(NRTL)热力学方法对煤制乙二醇副产物杂醇油回收工艺进行了模拟计算,应用灵敏度分析工具分别对甲醇回收塔(T-101)、萃取精馏塔(T-102)、乙二醇回收塔(T-103)的理论板数、进料位置、回流比等参数进行了优化,优化后的参数为:甲醇回收塔塔板数50,回流比3.6,进料位置第20块塔板;萃取精馏塔的塔板数25,回流比2.3,进料位置第14块塔板;乙二醇回收塔的塔板数9,回流比0.24,进料位置第7块塔板。经济效益分析表明,年处理2.4万t杂醇油可为企业带来每年约894.87万元的收益,显著提高企业的市场竞争力。  相似文献   

7.
为深入研究反应精馏过程,介绍了大型塔板反应精馏的操作过程,并通过对塔板上液体流动分布以及化学反应过程的分析,建立了描述反应精馏过程的二维涡流扩散模型,模型中包括化学反应速率项,并引入液体速度分布函数表示塔板上不均匀速度场的影响。利用有限元法求解数学模型,得到了乙酐水合生成乙酸的反应精馏塔板上的浓度分布,并进一步分析了液相速度分布对应精馏效率的影响。研究结果有助于深入理解大型反应精馏塔板上的传质过程。  相似文献   

8.
隔壁精馏塔可以用于分离三组分混合物,本文将其运用至氯乙烯高沸物的回收分离中。通过对氯乙烯高沸物进行Aspen模拟计算,优化隔壁精馏塔的压力、进料板位置、侧线采出位置、回流比以及分气比、分液比等操作参数,得出最优操作参数为:压力0.7 MPa,进料位置第7块塔板,侧线采出位置第10块塔板,回流比35,分液比0.239,分气比0.342。在上述参数下,隔壁塔有效地改善了产品的分离效果,并对高沸物中的氯乙烯、二氯乙烷以及三氯乙烷进行回收,以达到节能减排的目的。最后,将隔壁精馏塔与常规双塔流程进行比较,在相同产品分离要求的情况下,隔壁精馏塔全年总费用节省20.2%,节能效果明显。  相似文献   

9.
采用模拟的二甲基甲酰胺(DMF)与三氯甲烷(CHCl3)混合液(DMF质量分数为47%),通过精馏塔进行分离。当进料量为2L·h^-1时,得出最佳的操作条件如下:进料状态为泡点进料,加料位置为第七块塔板进料,回流比为4。最终结果为:理论塔板数为4.5块,塔板效率为37.5%,塔顶产品DMF质量分数低于0.01%,塔底产品DMF质量分数达到96.03%。该新方法与传统的直接精馏法相比既能减少精馏能耗,又能回收利用DMF,还可使萃取剂CHCl3重复使用,对环境友好不造成污染。  相似文献   

10.
选择水、氯苯作为正、反向萃取剂来分离丙酮-甲醇共沸物系,规定原料液进料流率为540 kmol/h,进料温度为320 K,各塔的操作压力均为101.325 kPa,通过Aspen Plus进行流程模拟,得到摩尔分数为99.5%的产品。以最小全年总费用(TAC)为目标、序贯迭代搜索法为优化方法对不同萃取剂下的各塔进行灵敏度分析,规定塔顶轻组分摩尔分数为99.5%、摩尔回收率为99.99%,得到的优化结果显示:正向萃取中萃取精馏塔的理论塔板数、原料进料位置和萃取剂进料位置分别为76块、64块和45块,萃取剂回收塔的理论塔板数、进料位置分别为25块、14块;反向萃取中萃取精馏塔的理论塔板数、原料进料位置和萃取剂进料位置分别为52块、40块和24块,萃取剂回收塔的理论塔板数、进料位置分别为25块、7块。通过TAC计算表算出两种萃取剂下工艺流程所需的经济费用,结果为正向萃取流程费用26 658 942.69元/a,反向萃取流程费用25 466 172.02元/a。  相似文献   

11.
以氯球为载体,合成3种固载化离子液体[PS-Im-C3H6SO3H][HSO4], [PS-Im-C3H6SO3H][Cl]和[PS-Im-C3H6SO3H][Br];然后,以这3种固载化离子液体作为催化剂,以乙酸和异戊醇为原料,催化合成乙酸异戊酯.在具有最好催化性能的[PS-Im-C3H6SO3H][Cl]的催化作用下,进一步探讨反应温度、催化剂用量、酸醇的量比和反应时间对酯化产率的影响.结果表明:以[PS-Im-C3H6SO3H][Cl]为催化剂,酸醇的量比为2∶1,催化剂用量为酸醇总量的2.5%,反应温度为115 ℃,反应时间为2 h的优化条件下,乙酸异戊酯的产率最高可达96.8%,且催化剂重复使用6次后仍能保持较高的产率,稳定性较好.  相似文献   

12.
 以取代苯甲醛、丙二腈和2-萘酚(或2,7-萘二酚)为原料合成出了3-氨基-2-氰基-1-(4-取代苯基)-1H-苯并[f]色烯类物质,后者在冰醋酸或者醋酸钠催化作用下,乙酸酐中回流,合成出苯并色烯并嘧啶类化合物。这类化合物的关环反应条件易于实施,后处理简单,易于纯化,属于首次报道。  相似文献   

13.
采用两步法合成离子液体——正-丙基磺酸-三乙基对甲苯磺酸铵,并用FT-IR,1H NMR和13C NMR对其结构进行表征.以该离子液体为催化剂,考察反应时间、反应温度、物料配比和离子液体用量对纯甘油与醋酐合成三醋酸甘油酯的产率的影响规律.结果表明:当反应温度为100 ℃,反应时间为3 h,n(甘油)∶n(醋酐)∶n(离子液体)=1.0∶4.0∶0.1时,三醋酸甘油酯的产率最高可达到96%.用甲苯萃取三醋酸甘油酯,回收得到的离子液体循环使用3次,三醋酸甘油酯的产率没有明显下降,说明离子液体的稳定性和循环使用性较好,且催化合成生物柴油时,离子液体的用量正好适用于继续催化副产物甘油与醋酐发生酰化反应生成三醋酸甘油酯.  相似文献   

14.
以负载型杂多蓝为催化剂合成乙酸丁酯的研究   总被引:2,自引:0,他引:2  
对以负载型杂多蓝为催化剂的乙酸与正丁醇的液相酯化反应进行了研究。考察了影响酯化反应的因素。结果表明:以负载型杂多蓝为催化剂,酯化反应转化率接近100%,收率可达98.9%,选择性为98.9%,重复使用10次催化效果仍好,该催化剂还有反应条件温和、反应时间短、对设备无腐蚀、无三废排放等优点。  相似文献   

15.
以联苯二酚为原料经2步反应合成了8-[4′-丙氧基(1,1-联苯)-氧]-辛酸, 并对影响产率的因素进行了探讨;通过红外光谱和核磁共振谱表征了8-[4′-丙氧基(1,1-联苯)-氧]-辛酸的化学结构,并用差示扫描量热法和热台偏光显微镜表征了其热致液晶性质。结果表明,第1步合成4′-丙氧基-4-羟基联苯的适宜条件为: n(联苯二酚)∶ n(溴代正丙烷)∶ n(碱)=1∶1.2∶1,碘化钾用量为4.5%(以联苯二酚质量为基准),加热回流8h;第2步制得8-[4′-丙氧基(1,1-联苯)-氧]-辛酸的适宜条件为;n(碳酸钾)∶ n(8-溴辛酸乙酯)∶ n(4′-丙氧基-4-羟基联苯)=2∶1.5∶1,相转移剂四丁基溴化铵用量为10%(以4′-丙氧基-4-羟基联苯质量为基准),加热回流24h,将产物在甲醇中水解制得,产率40%, 纯度可达94.9%。  相似文献   

16.
乙酸苄酯绿色合成新工艺的研究   总被引:3,自引:0,他引:3  
 以新型离子液体N-甲基吡咯烷酮硫酸氢盐([Hnmp]HSO4)为催化剂,环己烷为带水剂,对乙酸苄酯的酯化反应进行了研究,重点考察了催化剂用量、反应温度、反应时间、酸醇摩尔比和带水剂等因素对乙酸苄酯产率的影响。实验结果表明,[Hnmp]HSO4对合成乙酸苄酯有着良好的催化活性,当催化剂用量x苯甲醇)为1%,乙酸和苯甲醇的摩尔比为1.4∶1,环己烷为6 mL(与苯甲醇的摩尔比为0.56),油浴温度110 ℃反应1 h后,乙酸苄酯产率可达98%以上,且催化剂重复使用6次仍保持较高活性。实验放大10倍酯的产率为97.5%。腐蚀性实验表明,[Hnmp]HSO4对不锈钢的腐蚀率为0.015 2 g/(m2·h)。  相似文献   

17.
通过对有一对部分互溶的绿色液-液三组分体系-环己烷-乙醇-水、乙酸乙酯-乙醇-水、乙酸正丁酯-乙醇-水等体系平衡相图实验的反复研究,得出了(相对)最好的绿色体系。此实验体系已在06级学生实验中应用,取得了很好的实验效果。同时该绿色体系还可以在实验教学中向学生渗透绿色化学的思想理念。  相似文献   

18.
制备了7种酸功能化离子液体,分别将其与氯乙酸组成复合催化体系用于催化α-蒎烯一步合成乙酸松油酯,筛选出一种催化效果较佳的离子液体[HS03-pmim]H2PO4,并用FT-IR、^1HNMR和^13CNMR对其进行了表征。考察影响反应的主要因素,确定了较佳的反应条件:n(α-蒎烯):n([HSO3-pmim]H2P04):n(氯乙酸):n(乙酸)=5:0.9:5:14,反应温度40℃,反应时间10h。在此条件下,α-蒎烯转化率为85.6%,乙酸松油酯质量分数为36.0%。该催化体系可重复使用,重复使用5次时,α-蒎烯转化率为83.5%,乙酸松油酯质量分数仍达33.7%。  相似文献   

19.
精馏与渗透汽化复合生产ETBE的过程   总被引:5,自引:0,他引:5  
为了分离乙基叔丁基醚(ETBE)和乙醇混合物,得到ETBE产品,研究了乙酸丙酸纤维素膜(CAP)的渗透汽化过程,讨论了温度、浓度等因素对渗透通量和选择性的影响。结果表明,CAP膜的渗透通量随温度和乙醇在混合物中的浓度增加而增加,渗透通量与温度的关系满足Arrhenius形式的方程。在此基础上,提出了精馏与渗透汽化复合生产ETBE的过程,并运用ASPENPLUS软件对该过程进行了设计计算,汽液相平衡采用UNIFAC法进行预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号