首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
硅酸二钙(Ca2SiO4简写为C2S)是硅酸盐水泥的主要成份,对硅酸二钙进行掺杂改性。可以影响C2S的微观结构,水化活性,烧成速度等.用正电子湮没技术研究了掺Na2O和P2O5的C2S正电子寿命谱,结果表明掺杂能增加C2S的微结构缺陷,使C2S烧成速度加快,水化活性增大.用正电子湮没技术X射线衍射线宽效应和扫描电镜等手段研究了不同燃烧条件下,C2S的中间体CaO的活性及其变化规律.结果表明,在快速烧成条件下的新生态CaO晶粒尺寸小,缺陷浓度高,CaO与C2S的活性也较高在硅酸盐水泥生料中掺杂和采用快速烧成工艺,可以增大硅酸盐水泥的烧成反应速度,有重要的实用价值.  相似文献   

2.
溶胶-凝胶法合成β-C2S的早期水化   总被引:1,自引:0,他引:1  
利用溶胶-凝胶技术合成了一种新型的活性β-C2S并采用扫描电镜和固体核磁共振分析等方法对其早期水化进行了研究,发现:材料水化活性很高,水化1天时,出现了棒状或管状的I型C-S-H结构,但其阴离子聚合状态未发生变化;水化3天,7天时,以网络状的2型C-S-H为主,体系中出现了二聚态的硅酸根;水化28天时,2型C-S-H粒子继续长大,在某些微区出现了尺寸较大的1型C-S-H及由其叠合而成的花朵状C-S  相似文献   

3.
分别用光催化法、光催化-H2还原联合法制备了光催化剂Pt/CdS;用气相色谱法和泥浆电极法研究了Pt/CdS对CH3CH2OH/H2O体系的光催化活性.结果表明,用联合法可以制得Pt分散度大、光催化活性高的光催化剂Pt/CdS;泥浆电极法可以用于同类催化剂以及不同反应物反应活性比较方面的定性、半定量研究  相似文献   

4.
采用浸渍法制备了Ni/Sepioite及Ni-Sm/Sepiolie催化剂,并测定了催化剂的CO和CO2甲烷化活性。用TPR,H2-TPD,CO化学吸附和XPS等手段研究了催化剂的表面性质。结果表明,Sm2O3和加入提高了Ni/Sepiolie催化剂的CO和CO2甲烷化活性,增加了催化剂中Ni的分散度,活性表面积,降低了电子结合能。  相似文献   

5.
快速光度法和滴定法测定化学耗氧量   总被引:4,自引:0,他引:4  
讨论了用H2SO4-Ag2SO4催化,K2Cr2O7作氧化剂的快速光度法和快速滴定法测定化学耗氧量的方法。用该法测定了工业废水中的COD浓度,结果与重铬酸钾加热回流法等效。  相似文献   

6.
Bi(OR)3作前驱体合成Bi2O3微粉(R:CH2CH2OCH3.CMe2Et)   总被引:13,自引:0,他引:13  
报道了醇盐化合物Bi(OR)3(R:CH2CH2OCH3,CMe2Et)作前驱体,SolGel法合成Bi2O3多晶粉末的过程,探讨了Bi(OR)3性质及合成条件对产物物相的影响,并考察了Bi2O3微粉的颗粒性质,结果表明,Bi(OR)3的水解,聚合速度越快或在富氧气氛下煅烧干凝胶利于β-Bi2O3的生成,而乏氧气氛煅烧干凝胶或较小的升温温度则利于α-Bi2O3的生成,最后得到的Bi2O3微粉颗粒近  相似文献   

7.
报道了醇盐化合物Bi(OR)3(R∶CH2CH2OCH3,CMe2Et)作前驱体,Sol-Gel法合成Bi2O3多晶粉末的过程,探讨了Bi(OR)3性质及合成条件对产物物相的影响,并考察了Bi2O3微粉的颗粒性质.结果表明,Bi(OR)3的水解、聚合速度越快或在富氧气氛下煅烧干凝胶利于β-Bi2O3的生成,而乏氧气氛煅烧干凝胶或较小的升温速度则利于α-Bi2O3的生成,最后得到的Bi2O3微粉颗粒近似为球形,粒度范围为60~120nm.  相似文献   

8.
超细矿渣高性能混凝土试验及水化研究   总被引:1,自引:0,他引:1  
用超细矿渣粉等材料制备了C80以上的高性能混凝土,并研究了超细矿渣水泥的水化。结果表明,超细矿渣粉不仅可提高新拌混凝土的工作性能,而且能大幅度提高水泥及混凝土的力学性能。研究还发现,超细矿渣的水化活性较高,在水泥水化早期就大量生成胶凝性水化产物,从而减少了水泥石中的Ca(OH)2含量,改善水泥石及混凝土的微观结构。  相似文献   

9.
微细氧化镍粉的制备(英文)   总被引:2,自引:0,他引:2  
以硫酸镍为原料,用草酸盐淀淀-煅烧方法制备了粒度为1-5μm的微细氧化镍颗粒。得出了最佳工艺条件:c(NiSO4)=0.5-1.5mol/L,n(C2o62-4):n(Ni^2+)=1.2-1.3:1,pH=4-5,沉淀温度40-55℃,煅烧温度500-900℃,煅烧时间4-6h。  相似文献   

10.
本文研究了CaO-SiO2-MgO-H2O体系的热力学,结果表明:SiO2 优先与CaO水热形成水化硅酸钙,多余的SiO2 才会与MgO直接水热形成水化硅酸镁。当没有SiO2 时,MgO才会水化形成Mg(OH)2。  相似文献   

11.
本文研究了掺杂氧化物对C_3S固溶体水化以及水化机理的影响,结果表明掺杂氧化物的性质、水化产物和晶格缺陷决定了水化活性和水化机理,而不是由于晶型改变引起的。  相似文献   

12.
以碳酸钙、氢氧化钙和氧化铝为原材料,选用不同煅烧温度、保温时间及煅烧次数,确定制备高纯度铝酸三钙(C3A)的方法。经X射线衍射(XRD)和扫描电镜(SEM)分析,结果表明:最佳制备方法为以氢氧化钙为钙质原料、氧化铝为铝质原料,煅烧温度为1 320℃,保温时间为3 h,经3次煅烧研磨得w(f-CaO)为0.45%的高纯度C3A;水化10 min的C3A具有较高的水化活性。  相似文献   

13.
以硅溶胶、硝酸钙为原料,尿素为燃料,采用燃烧法制备纳米硅酸三钙。研究了化学计量比、引燃温度对合成产物中游离氧化钙含量的影响。用乙二醇法测定产物中游离氧化钙的含量,x射线衍射仪、场发射扫描电镜、Zeta电位及纳米粒度分析仪和微量热仪表征合成样品的物相、微观形貌、粒度分布和水化热。结果表明:化学计量比为0.24,引燃温度为700oC时,合成产物中游离氧化钙含量达到最低值2.0%;合成的纳米硅酸三钙颗粒为不同结晶程度且呈现多种形貌的颗粒,平均粒度为225.9nm;合成的纳米硅酸三钙水化放热峰值出现的时间为69.2s,峰值为2.4368mw/g,比传统水泥具有较高的水化活性。  相似文献   

14.
硅热法炼镁预制球团的实验研究   总被引:2,自引:0,他引:2  
在硅热法炼镁物料预处理过程中,白云石煅烧时经常会损失大约5%的细粉料.为了解决这一问题,提出了将白云石先造球再进行煅烧处理的新工艺.主要研究了白云石球团进行分步煅烧后,球团内白云石的烧损率、煅白的灼减量及水化活度.结果表明:白云石制团后经过分步煅烧,球团内煅白的质量完全达到硅热法炼镁的要求,并有效地缩短了白云石煅烧时间.当煅烧1h时,球团内白云石的烧损率为45%,煅白的灼减量为189%左右,水化活度为35%,球团的吸湿远远小于白云石常规烧结.  相似文献   

15.
16.
井壁失稳一般都发生在泥页岩、盐岩、弱胶结或未胶结的砂岩及其他破碎性岩石的地层, 最常见且影响严重的是泥页岩地层,导致泥页岩地层失稳的最重要的原因是泥页岩的水化。针对泥页岩在水溶液中的水化程度取决于水溶液的活度,分析了活度与泥页岩水化膨胀的相互关系, 认为对防止泥页岩井壁失稳非常重要。通过吸附等温线的方法测定了Weigh2、Weigh3、YJS-1、YJS-2、KCOOH、NaCOOH、NaCl、KCl、CaCl2 的活度,测定了上述产品的抑制膨胀性和抑制分散性,对比分析了盐溶液活度和抑制性的关系。结果表明,根据盐溶液的活度和抑制性,可以通过调节钻井液中不同的盐及其浓度,控制泥页岩水化,达到井壁稳定的目的。  相似文献   

17.
探究不锈钢渣尾泥-矿渣对水泥水化性能的影响,既可解决废渣利用率低且污染环境问题,又能促进建材行业向绿色发展.首先研究了3种原材料的矿物组成和粒度组成,再将两种废渣复掺到水泥熟料中,发现当不锈钢渣尾泥掺量在10% ~20%,矿渣掺量在10% ~30%,两者任比例复掺到水泥熟料中,28 d抗压强度均超过了42.5 MPa.综合热分析定量发现两种废渣能相互激发活性,早期水化反应不明显,后期逐渐增强.微观分析发现试样水化产物主要是未水化的C2 S、C3 S和Ca(OH)2,少量的C-S-H凝胶和AFt晶体,并且后期Ca(OH)2的含量是影响强度的主要因素.  相似文献   

18.
生活垃圾焚烧炉渣集料的胶凝特征   总被引:2,自引:0,他引:2  
为研究垃圾焚烧炉渣集料(BAA)的胶凝特征,以强度试验分析BAA的水硬性和火山灰活性,并采用X射线荧光光谱仪、X射线衍射仪和扫描电子显微镜分析微观作用机理.结果表明,BAA含有水泥熟料矿物和活性SiO_2、Al_2O_3,体现出水硬性和火山灰活性特征.BAA中水泥熟料矿物遇水发生水化反应生成水化硅酸钙(C-S-H)凝胶和Ca(OH)_2,活性SiO_2、Al_2O_3在Ca(OH)_2激发作用下发生火山灰反应生成C-S-H凝胶、水化硅铝酸钙等水化产物;BAA与水泥、水混合后,除上述反应外,活性Al_2O_3在硫酸盐激发下也发生火山灰反应生成钙矾石.BAA在水泥中的火山灰反应有一定延后性.湿法处理、长时间堆放BAA的胶凝活性分别较干法处理、短时间堆放BAA低.  相似文献   

19.
利用公式△H=-0.1196n/λ计算了S、H2S及CS2在氧气中燃烧反应的火焰温度,并推测了三种物质燃烧反应的机理.S在氧气中燃烧反应的火焰温度计算值为2086 K,与测定值2093K接近,误差为-0.30%.H2S在氧气中燃烧反应的火焰温度计算值为2238K,测定温度2383K,误差为-6.1%.CS2在氧气中燃烧反应的火焰温度计算值为2502K,测定温度2468K,误差为0.14%.根据燃烧反应的火焰温度,推测S、H2S及CS2在氧气中燃烧反应机理.S燃烧反应机理为:(1)O2+ hv→2O·,(2)S +O·→SO+hv,(3)2SO+O2→2SO2,(4)SO2+O·→SO3 +hv.H2S燃烧反应机理为:(1)O2+ hv→2O·,(2) H2S→H2 +S,(3)H2 +O·→H2O+hv,(4)S+O·→SO+hv,(5) 2SO+ O2→2SO2,(6)SO2 +O·→SO3+ hv.CS2燃烧反应机理为:(1)O2+hv→2O·,(2) CS2→C +2S,(3)C+O·→CO+ hv,(4)CO+O·→CO+hv,(5)S+O·→SO+ hv,(6)2SO+ O2→2SO2,(7)SO2+O·→SO3+ hv.  相似文献   

20.
应用恒温导热法等研究了道路水泥的水化动力学过程以及CaO、石膏对其水化过程和性能的影响。研究结果表明,与硅酸盐水泥、普通硅酸盐水泥相比,道路水泥由于其特有的矿物组成,尽管早期水化放热速率和水化放热量较低,但早期强度较高,而且具有初凝时间较长,初、终凝时间间隔较短、耐磨、抗干缩等性能,能较好地适应道路建筑工程需要。道路水泥在不同水化阶段具有不同的反应机理,所适用的动力学公式及动力学参数也不同,外掺CaO可使其水化减速期动力学过程得以改变,但掺入少量CaO对道路水泥的性能影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号