首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The additive clustering approach is applied to the problem of two-mode clustering and compared with the recent error-variance approach of Eckes and Orlik (1993). Although the schemes of the computational algorithms look very similar in both of the approaches, the additive clustering has been shown to have several advantages. Specifically, two technical limitations of the error-variance approach (see Eckes and Orlik 1993, p. 71) have been overcome in the framework of the additive clustering. The research was supported by the Office of Naval Research under grant number N0014-93-1-0222 to Rutgers University. The authors are indebted both to Fionn Murtagh, who served as Acting Editor, and to anonymous Referees for thoughtful and constructive reviews.  相似文献   

2.
Variable Selection for Clustering and Classification   总被引:2,自引:2,他引:0  
As data sets continue to grow in size and complexity, effective and efficient techniques are needed to target important features in the variable space. Many of the variable selection techniques that are commonly used alongside clustering algorithms are based upon determining the best variable subspace according to model fitting in a stepwise manner. These techniques are often computationally intensive and can require extended periods of time to run; in fact, some are prohibitively computationally expensive for high-dimensional data. In this paper, a novel variable selection technique is introduced for use in clustering and classification analyses that is both intuitive and computationally efficient. We focus largely on applications in mixture model-based learning, but the technique could be adapted for use with various other clustering/classification methods. Our approach is illustrated on both simulated and real data, highlighted by contrasting its performance with that of other comparable variable selection techniques on the real data sets.  相似文献   

3.
To reveal the structure underlying two-way two-mode object by variable data, Mirkin (1987) has proposed an additive overlapping clustering model. This model implies an overlapping clustering of the objects and a reconstruction of the data, with the reconstructed variable profile of an object being a summation of the variable profiles of the clusters it belongs to. Grasping the additive (overlapping) clustering structure of object by variable data may, however, be seriously hampered in case the data include a very large number of variables. To deal with this problem, we propose a new model that simultaneously clusters the objects in overlapping clusters and reduces the variable space; as such, the model implies that the cluster profiles and, hence, the reconstructed data profiles are constrained to lie in a lowdimensional space. An alternating least squares (ALS) algorithm to fit the new model to a given data set will be presented, along with a simulation study and an illustrative example that makes use of empirical data.  相似文献   

4.
A clustering that consists of a nested set of clusters may be represented graphically by a tree. In contrast, a clustering that includes non-nested overlapping clusters (sometimes termed a “nonhierarchical” clustering) cannot be represented by a tree. Graphical representations of such non-nested overlapping clusterings are usually complex and difficult to interpret. Carroll and Pruzansky (1975, 1980) suggested representing non-nested clusterings with multiple ultrametric or additive trees. Corter and Tversky (1986) introduced the extended tree (EXTREE) model, which represents a non-nested structure as a tree plus overlapping clusters that are represented by marked segments in the tree. We show here that the problem of finding a nested (i.e., tree-structured) set of clusters in an overlapping clustering can be reformulated as the problem of finding a clique in a graph. Thus, clique-finding algorithms can be used to identify sets of clusters in the solution that can be represented by trees. This formulation provides a means of automatically constructing a multiple tree or extended tree representation of any non-nested clustering. The method, called “clustrees”, is applied to several non-nested overlapping clusterings derived using the MAPCLUS program (Arabie and Carroll 1980).  相似文献   

5.
6.
We devise a classification algorithm based on generalized linear mixed model (GLMM) technology. The algorithm incorporates spline smoothing, additive model-type structures and model selection. For reasons of speed we employ the Laplace approximation, rather than Monte Carlo methods. Tests on real and simulated data show the algorithm to have good classification performance. Moreover, the resulting classifiers are generally interpretable and parsimonious.  相似文献   

7.
The Kohonen self-organizing map method: An assessment   总被引:1,自引:0,他引:1  
The “self-organizing map” method, due to Kohonen, is a well-known neural network method. It is closely related to cluster analysis (partitioning) and other methods of data analysis. In this article, we explore some of these close relationships. A number of properties of the technique are discussed. Comparisons with various methods of data analysis (principal components analysis, k-means clustering, and others) are presented. This work has been partially supported for M. Hernández-Pajares by the DGCICIT of Spain under grant No. PB90-0478 and by a CESCA-1993 computer-time grant. Fionn Murtagh is affiliated to the Astrophysics Division, Space Science Department, European Space Agency.  相似文献   

8.
One key point in cluster analysis is to determine a similarity or dissimilarity measure between data objects. When working with time series, the concept of similarity can be established in different ways. In this paper, several non-parametric statistics originally designed to test the equality of the log-spectra of two stochastic processes are proposed as dissimilarity measures between time series data. Their behavior in time series clustering is analyzed throughout a simulation study, and compared with the performance of several model-free and model-based dissimilarity measures. Up to three different classification settings were considered: (i) to distinguish between stationary and non-stationary time series, (ii) to classify different ARMA processes and (iii) to classify several non-linear time series models. As it was expected, the performance of a particular dissimilarity metric strongly depended on the type of processes subjected to clustering. Among all the measures studied, the nonparametric distances showed the most robust behavior.  相似文献   

9.
Models for the representation of proximity data (similarities/dissimilarities) can be categorized into one of three groups of models: continuous spatial models, discrete nonspatial models, and hybrid models (which combine aspects of both spatial and discrete models). Multidimensional scaling models and associated methods, used for thespatial representation of such proximity data, have been devised to accommodate two, three, and higher-way arrays. At least one model/method for overlapping (but generally non-hierarchical) clustering called INDCLUS (Carroll and Arabie 1983) has been devised for the case of three-way arrays of proximity data. Tree-fitting methods, used for thediscrete network representation of such proximity data, have only thus far been devised to handle two-way arrays. This paper develops a new methodology called INDTREES (for INdividual Differences in TREE Structures) for fitting various(discrete) tree structures to three-way proximity data. This individual differences generalization is one in which different individuals, for example, are assumed to base their judgments on the same family of trees, but are allowed to have different node heights and/or branch lengths.We initially present an introductory overview focussing on existing two-way models. The INDTREES model and algorithm are then described in detail. Monte Carlo results for the INDTREES fitting of four different three-way data sets are presented. In the application, a single ultrametric tree is fitted to three-way proximity data derived from intention-to-buy-data for various brands of over-the-counter pain relievers for relieving three common types of maladies. Finally, we briefly describe how the INDTREES procedure can be extended to accommodate hybrid modelling, as well as to handle other types of applications.  相似文献   

10.
Analysis of between-group differences using canonical variates assumes equality of population covariance matrices. Sometimes these matrices are sufficiently different for the null hypothesis of equality to be rejected, but there exist some common features which should be exploited in any analysis. The common principal component model is often suitable in such circumstances, and this model is shown to be appropriate in a practical example. Two methods for between-group analysis are proposed when this model replaces the equal dispersion matrix assumption. One method is by extension of the two-stage approach to canonical variate analysis using sequential principal component analyses as described by Campbell and Atchley (1981). The second method is by definition of a distance function between populations satisfying the common principal component model, followed by metric scaling of the resulting between-populations distance matrix. The two methods are compared with each other and with ordinary canonical variate analysis on the previously introduced data set.  相似文献   

11.
We review methods of qualitative factor analysis (QFA) developed by the author and his collaborators over the last decade and discuss the use of QFA methods for the additive clustering problem. The QFA method includes, first, finding a square Boolean matrix in a fixed set of Boolean matrices with simple structures to approximate a given similarity matrix, and, second, repeating this process again and again using residual similarity matrices. We present convergence properties for three versions of the method, provide cluster interpretations for results obtained from the algorithms, and give formulas for the evaluation of factor shares of the initial similarities variance.I am indebted to Professor P. Arabie and the referees for valuable comments and editing of the text.  相似文献   

12.
K -means partitioning. We also describe some new features and improvements to the algorithm proposed by De Soete. Monte Carlo simulations have been conducted using different error conditions. In all cases (i.e., ultrametric or additive trees, or K-means partitioning), the simulation results indicate that the optimal weighting procedure should be used for analyzing data containing noisy variables that do not contribute relevant information to the classification structure. However, if the data involve error-perturbed variables that are relevant to the classification or outliers, it seems better to cluster or partition the entities by using variables with equal weights. A new computer program, OVW, which is available to researchers as freeware, implements improved algorithms for optimal variable weighting for ultrametric and additive tree clustering, and includes a new algorithm for optimal variable weighting for K-means partitioning.  相似文献   

13.
We describe a novel extension to the Class-Cover-Catch-Digraph (CCCD) classifier, specifically tuned to detection problems. These are two-class classification problems where the natural priors on the classes are skewed by several orders of magnitude. The emphasis of the proposed techniques is in computationally efficient classification for real-time applications. Our principal contribution consists of two boosted classi- fiers built upon the CCCD structure, one in the form of a sequential decision process and the other in the form of a tree. Both of these classifiers achieve performances comparable to that of the original CCCD classifiers, but at drastically reduced computational expense. An analysis of classification performance and computational cost is performed using data from a face detection application. Comparisons are provided with Support Vector Machines (SVM) and reduced SVMs. These comparisons show that while some SVMs may achieve higher classification performance, their computational burden can be so high as to make them unusable in real-time applications. On the other hand, the proposed classifiers combine high detection performance with extremely fast classification.  相似文献   

14.
The main aim of this work is the study of clustering dependent data by means of copula functions. Copulas are popular multivariate tools whose importance within clustering methods has not been investigated yet in detail. We propose a new algorithm (CoClust in brief) that allows to cluster dependent data according to the multivariate structure of the generating process without any assumption on the margins. Moreover, the approach does not require either to choose a starting classification or to set a priori the number of clusters; in fact, the CoClust selects them by using a criterion based on the log–likelihood of a copula fit. We test our proposal on simulated data for different dependence scenarios and compare it with a model–based clustering technique. Finally, we show applications of the CoClust to real microarray data of breast-cancer patients.  相似文献   

15.
Dimensionally reduced model-based clustering methods are recently receiving a wide interest in statistics as a tool for performing simultaneously clustering and dimension reduction through one or more latent variables. Among these, Mixtures of Factor Analyzers assume that, within each component, the data are generated according to a factor model, thus reducing the number of parameters on which the covariance matrices depend. In Factor Mixture Analysis clustering is performed through the factors of an ordinary factor analysis which are jointly modelled by a Gaussian mixture. The two approaches differ in genesis, parameterization and consequently clustering performance. In this work we propose a model which extends and combines them. The proposed Mixtures of Factor Mixture Analyzers provide a unified class of dimensionally reduced mixture models which includes the previous ones as special cases and could offer a powerful tool for modelling non-Gaussian latent variables.  相似文献   

16.
Assume that a dissimilarity measure between elements and subsets of the set being clustered is given. We define the transformation of the set of subsets under which each subset is transformed into the set of all elements whose dissimilarity to it is not greater than a given threshold. Then a cluster is defined as a fixed point of this transformation. Three well-known clustering strategies are considered from this point of view: hierarchical clustering, graph-theoretic methods, and conceptual clustering. For hierarchical clustering generalizations are obtained that allow for overlapping clusters and/or clusters not forming a cover. Three properties of dissimilarity are introduced which guarantee the existence of fixed points for each threshold. We develop the relation to the theory of quasi-concave set functions, to help give an additional interpretation of clusters.  相似文献   

17.
This paper introduces a novel mixture model-based approach to the simultaneous clustering and optimal segmentation of functional data, which are curves presenting regime changes. The proposed model consists of a finite mixture of piecewise polynomial regression models. Each piecewise polynomial regression model is associated with a cluster, and within each cluster, each piecewise polynomial component is associated with a regime (i.e., a segment). We derive two approaches to learning the model parameters: the first is an estimation approach which maximizes the observed-data likelihood via a dedicated expectation-maximization (EM) algorithm, then yielding a fuzzy partition of the curves into K clusters obtained at convergence by maximizing the posterior cluster probabilities. The second is a classification approach and optimizes a specific classification likelihood criterion through a dedicated classification expectation-maximization (CEM) algorithm. The optimal curve segmentation is performed by using dynamic programming. In the classification approach, both the curve clustering and the optimal segmentation are performed simultaneously as the CEM learning proceeds. We show that the classification approach is a probabilistic version generalizing the deterministic K-means-like algorithm proposed in Hébrail, Hugueney, Lechevallier, and Rossi (2010). The proposed approach is evaluated using simulated curves and real-world curves. Comparisons with alternatives including regression mixture models and the K-means-like algorithm for piecewise regression demonstrate the effectiveness of the proposed approach.  相似文献   

18.
This paper proposes a maximum clustering similarity (MCS) method for determining the number of clusters in a data set by studying the behavior of similarity indices comparing two (of several) clustering methods. The similarity between the two clusterings is calculated at the same number of clusters, using the indices of Rand (R), Fowlkes and Mallows (FM), and Kulczynski (K) each corrected for chance agreement. The number of clusters at which the index attains its maximum is a candidate for the optimal number of clusters. The proposed method is applied to simulated bivariate normal data, and further extended for use in circular data. Its performance is compared to the criteria discussed in Tibshirani, Walther, and Hastie (2001). The proposed method is not based on any distributional or data assumption which makes it widely applicable to any type of data that can be clustered using at least two clustering algorithms.  相似文献   

19.
The rapid increase in the size of data sets makes clustering all the more important to capture and summarize the information, at the same time making clustering more difficult to accomplish. If model-based clustering is applied directly to a large data set, it can be too slow for practical application. A simple and common approach is to first cluster a random sample of moderate size, and then use the clustering model found in this way to classify the remainder of the objects. We show that, in its simplest form, this method may lead to unstable results. Our experiments suggest that a stable method with better performance can be obtained with two straightforward modifications to the simple sampling method: several tentative models are identified from the sample instead of just one, and several EM steps are used rather than just one E step to classify the full data set. We find that there are significant gains from increasing the size of the sample up to about 2,000, but not from further increases. These conclusions are based on the application of several alternative strategies to the segmentation of three different multispectral images, and to several simulated data sets.  相似文献   

20.
MCLUST is a software package for model-based clustering, density estimation and discriminant analysis interfaced to the S-PLUS commercial software and the R language. It implements parameterized Gaussian hierarchical clustering algorithms and the EM algorithm for parameterized Gaussian mixture models with the possible addition of a Poisson noise term. Also included are functions that combine hierarchical clustering, EM and the Bayesian Information Criterion (BIC) in comprehensive strategies for clustering, density estimation, and discriminant analysis. MCLUST provides functionality for displaying and visualizing clustering and classification results. A web page with related links can be found at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号