首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Large clusters of co-expressed genes in the Drosophila genome   总被引:6,自引:0,他引:6  
  相似文献   

2.
SATB1 targets chromatin remodelling to regulate genes over long distances   总被引:23,自引:0,他引:23  
  相似文献   

3.
Dixon JR  Selvaraj S  Yue F  Kim A  Li Y  Shen Y  Hu M  Liu JS  Ren B 《Nature》2012,485(7398):376-380
The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct chromosome territories, and numerous models have been proposed for how chromosomes fold within chromosome territories. These models, however, provide only few mechanistic details about the relationship between higher order chromatin structure and genome function. Recent advances in genomic technologies have led to rapid advances in the study of three-dimensional genome organization. In particular, Hi-C has been introduced as a method for identifying higher order chromatin interactions genome wide. Here we investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types at unprecedented resolution. We identify large, megabase-sized local chromatin interaction domains, which we term 'topological domains', as a pervasive structural feature of the genome organization. These domains correlate with regions of the genome that constrain the spread of heterochromatin. The domains are stable across different cell types and highly conserved across species, indicating that topological domains are an inherent property of mammalian genomes. Finally, we find that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.  相似文献   

4.
5.
Wagner CR  Kuervers L  Baillie DL  Yanowitz JL 《Nature》2010,467(7317):839-843
Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes, and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots and significant variation in hotspot usage exists between and among individuals. This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/ or chromosome domain organization. Chromosomes show different frequencies of nondisjunction (NDJ), reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation.  相似文献   

6.
7.
8.
9.
10.
11.
提出了差异共表达框架和一个差异共表达评分函数,以观察到的一个双聚类基因在所属双聚类的条件下共表达和在其他条件下非共表达为基础,客观量化基因双聚类的质量.此外,还提出了一个评分函数把双聚类分层为三种类型的共表达.在实现双聚类输出统一排名中,使用提出的评分函数对这4个公认的双聚类算法在不同区域的6个实际数据集上的性能和行为进行测试.实验结果表明,在鉴别共表达双聚类方面,差异共表达框架能有效提高共表达基因双聚类质量和双聚类算法的性能.  相似文献   

12.
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.  相似文献   

13.
Nested expression domains of four homeobox genes in developing rostral brain.   总被引:35,自引:0,他引:35  
Insight into the genetic control of the identity of specific regions along the body axis of vertebrates has resulted primarily from the study of vertebrate homologues of regulatory genes operating in the Drosophila trunk, but little is known about the development of most anterior regions of the body either in flies or vertebrates. Three Drosophila genes have been identified that are important in controlling the development of the head, two of which, empty spiracles and orthodenticle, have been cloned and shown to contain a homeobox. We previously cloned and characterized Emx1 and Emx2, two mouse genes related to empty spiracles that are expressed in restricted regions of the developing forebrain, including the presumptive cerebral cortex and olfactory bulbs. Here we report the identification of Otx1 and Otx2, which are related to orthodenticle. We have compared the expression domains of the four genes in the developing rostral brain of mouse embryos at a developmental stage, day 10 post coitum, when they are all expressed. Otx2 is expressed in every dorsal and most ventral regions of telencephalon, diencephalon and mesencephalon. The Otx1 expression domain is similar to that of Otx2, but contained within it. The Emx2 expression domain is comprised of dorsal telencephalon and small diencephalic regions, both dorsally and ventrally. Finally, Emx1 expression is exclusively confined to the dorsal telencephalon. Thus at the time when regional specification of major brain regions takes place, the expression domains of the four genes seem to be continuous regions contained within each other in the sequence Emx1 less than Emx2 less than Otx1 less than Otx2.  相似文献   

14.
O Karlsson  S Thor  T Norberg  H Ohlsson  T Edlund 《Nature》1990,344(6269):879-882
The activity of the rat insulin I gene enhancer is mainly dependent on two cis-acting protein-binding domains. Here we report the isolation of a complementary DNA encoding a protein, Isl-1, that binds to one of these domains. Isl-1 contains a homeodomain with greatest similarity to those of the Caenorhabditis elegans proteins encoded by mec-3 and lin-11. In addition, Isl-1, like the lin-11 and mec-3 gene products, contains a novel Cys-His domain which is reminiscent of known metal-binding regions. Together these proteins define a novel class of proteins containing both a homeo- and a Cys His-domain. Isl-1 is preferentially expressed in cells of pancreatic endocrine origin. If the structural homologies between Isl-1 and the C. elegans gene products reflect functional similarities, a role for Isl-1 in the development of pancreatic endocrine cells could be envisaged.  相似文献   

15.
M Bienz  G Tremml 《Nature》1988,333(6173):576-578
Domains of differential homeotic gene activity are formed at specific positions along the anteroposterior axis of the early Drosophila embryo. Homeotic genes are required continuously throughout development, so that homeotic gene activity has to be maintained independently of the positional information provided in the early embryo. In the ectoderm, the domains of homeotic gene activity partially overlap, but we have found that in the visceral mesoderm at least three of these genes are expressed in adjacent and mutually exclusive domains. It has been proposed that stable, sharply demarcated domains of this type could be established if a homeotic gene product stimulated its own expression locally and inhibited the expression of other homeotic genes, which Meinhardt has termed autocatalysis and mutual exclusion respectively. Furthermore, autocatalysis of this kind can in principle account for the maintenance of homeotic gene activity throughout development. We find that the unique domain of Ultrabithorax (Ubx) expression in the visceral mesoderm is dependent both on autocatalysis and on an exclusion mechanism: Ubx product is required for its own synthesis, whereas the product of the posteriorly adjacent gene abdominal-A represses Ubx expression.  相似文献   

16.
17.
New type of POU domain in germ line-specific protein Oct-4.   总被引:72,自引:0,他引:72  
H R Sch?ler  S Ruppert  N Suzuki  K Chowdhury  P Gruss 《Nature》1990,344(6265):435-439
  相似文献   

18.
The architecture of human chromosomes in interphase nuclei is still largely unknown. Microscopy studies have indicated that specific regions of chromosomes are located in close proximity to the nuclear lamina (NL). This has led to the idea that certain genomic elements may be attached to the NL, which may contribute to the spatial organization of chromosomes inside the nucleus. However, sequences in the human genome that interact with the NL in vivo have not been identified. Here we construct a high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts. This map shows that genome-lamina interactions occur through more than 1,300 sharply defined large domains 0.1-10 megabases in size. These lamina-associated domains (LADs) are typified by low gene-expression levels, indicating that LADs represent a repressive chromatin environment. The borders of LADs are demarcated by the insulator protein CTCF, by promoters that are oriented away from LADs, or by CpG islands, suggesting possible mechanisms of LAD confinement. Taken together, these results demonstrate that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus.  相似文献   

19.
The genome of the flowering plant Arabidopsis thaliana has five chromosomes. Here we report the sequence of the largest, chromosome 1, in two contigs of around 14.2 and 14.6 megabases. The contigs extend from the telomeres to the centromeric borders, regions rich in transposons, retrotransposons and repetitive elements such as the 180-base-pair repeat. The chromosome represents 25% of the genome and contains about 6,850 open reading frames, 236 transfer RNAs (tRNAs) and 12 small nuclear RNAs. There are two clusters of tRNA genes at different places on the chromosome. One consists of 27 tRNA(Pro) genes and the other contains 27 tandem repeats of tRNA(Tyr)-tRNA(Tyr)-tRNA(Ser) genes. Chromosome 1 contains about 300 gene families with clustered duplications. There are also many repeat elements, representing 8% of the sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号