首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设G=(V,E)是有限简单无向图,U是G的一个边割,k是一正整数.若G-U的每个分支的阶至少为k,则称U为G的一个k阶限制边割.定义G的k阶限制边连通度λ(G)为G的k阶限制边割中最少的边数,达到最小的称为λ割.定义ξ(G) =min{(F):F是G的k阶连通子图},其中(F)表示恰好有一个端点在F上的边的数目.如果λ(G) =ξ(G),则称G是λ最优图.本文给出了二部图λ3最优性的一个原子条件.  相似文献   

2.
设G是有限简单无向图, k是正整数,使G-S的每个分支都包含至少k个点的边割S称为G的k-限制边割。若任意最小k-限制边割都孤立一个k阶连通子图,则称图G是超级-λk 的。本文应用邻域条件给出了图是超级-λ3 的充分条件。  相似文献   

3.
设G是有限简单无向图,使G-S每个分支的阶至少为4的边割S称为G的4阶限制边割.G的4阶限制边连通度λ4(G)是G的4阶限制边割之中最少的边数,达到最小的叫λ4边割.定义ξ4(G)=min{(U):UV(G),G[U]是4阶连通子图},此处(U)表示恰好有一个端点在U中的边数.若λ4(G)=ξ4(G),则称G是λ4最优的.若任意λ4边割都孤立一个4阶连通子图,则称G是超级λ4连通的.给出图是λ4最优和超级λ4连通的度条件,并举例说明条件的最好可能性.  相似文献   

4.
设G是有限简单无向图,k是正整数.使G-S每个分支的阶不小于k的边割S称为G的k阶限制边割.G的四阶限制边连通度λ4(G)是G的四阶限制边割之中最少的边数.若对于任意边e∈E(G),均有λ4(G-e)=λ4(G)-1,则称G是极小四阶限制边连通图.定义ξ4(G)=min {(e)(U):U(∪)V(G),G[U]是四阶连通导出子图},此处(e)(U)表示恰好有一个点在U上的边的数目.若λ4(G)=ξ4(G),则称G是λ4最优的.若每个5阶限制边割都孤立出G的一个5阶连通子图,则称G是超级5阶边连通的.笔者给出:极小四阶限制边连通图若不是λ4最优的,则是3正则,围长为5,任意边都关联5圈,且是超级5阶边连通的图.  相似文献   

5.
设S是连通图G的一个边割。若G-S不包含孤立点,则称S是G的一个限制边割。图G的最小限制边割的边数称为G的限制边连通度,记为λ'(G).如果图G的限制边连通度等于其最小度,则称图G是最优限制边连通的,简称λ'-最优的。设G是一个n阶的连通无三角图,且最小度δ(G)≥2.文章证明了,若最小边度ξ(G)≥(n/2-2 )(1+1/δ(G)-1),则G是λ'-最优的。并由此推出,若连通无三角图G的最小度δ(G)≥n/4+1,则G是λ'-最优的。最后给出例子说明这些结果给出的边界都是紧的。  相似文献   

6.
设G是有限简单无向图,使G-S的每个分支都包含至少k个点的边割S称为G的k-限制边割。G的k-限制边连通度λk(G)是G的k-限制边割之中最少的边数。定义ξk(G)=min{[U,U-]:U V(G),|U|=k,G[U]是连通的},若λk(G)=ξk(G),则称G是λk-最优的。若任意最小k-限制边割都孤立一个k阶分支,则称图G是超级-λk的。应用范型条件给出了图是λ3-最优和超级-λ3的充分条件。  相似文献   

7.
设G是n阶简单无向连通图,G的限制边割是删除它以后G不连通,且留下的每个分支不含孤立点的边子集;限制边割的最小基数称为限制边连通度.记G的顶点x的度为d(x)。证明了若对超级连通图G中任意一对不相邻的顶点x和y都有d(x) (dy)n,则G是极大限制边边通的当且仅当G不同构一种特殊图G。  相似文献   

8.
图是λ4-最优的一个充分条件   总被引:1,自引:0,他引:1  
设G=(V,E)足有限简单无向图,U,是一个边割.若G-U的每个分支的阶至少是4,则称U为G的4阶限制边割.G的4阶限制边连通度λ4(G)是C的4阶限制边割之中最少的边数.对图G的一个子图F,令a(F)表示恰好有一个点在F上的边的数日,定义ξ4(G)=min{a(F):F是G的连通的导出子图,|F|=4}为F的4阶最小边度,用D,g,δ 分别表示G的直径,围长和最小度.本文证明了:如果|G|≥11,D≤g-6且δ≥3,那么λ4(G)=ξ4(G).  相似文献   

9.
设S是连通图G中的一个边子集。若G-S不连通且它的每个连通分支的阶至少为k,则称S是G的一个k限制边割。图G的最小k限制边割的边数称为G的k限制边连通度,记为λk(G).义ζk(G)=min{|[X,X]|∶|X|=k,G[X]连通},其中X=V(G)\X.若λk(G)=ζk(G),则称G是λk-最优的。如果图G的每个最小k限制边割都孤立了一个k阶连通子图,那么称G是超级-λk的。设k是一个不小于2的正整数且G是一个阶不小于2庇的图。本文证明了若对于G中任意一对不相邻顶点u,v都有d(u)+d(v)≥ν+2k-4且G不属于一类特殊图,则G是λk-最优的。最后,给出了图是超级-λk的一个充分条件。  相似文献   

10.
设S是连通图G的一个边割。若G-S不包含孤立点,则称S是G的一个限制边割。如果图G的每个最小限制边割恰好分离出图G的一条边,则称图G是超级限制边连通的,简称超级-λ'的。设G是一个阶n≥4的连通无三角图。本文证明了若G中任意满足dist(u,v)=2的点对u,v∈V(G)有d(u)+d(v)≥2[n+2/4]+3,则G是超级-λ'的。最后,举例说明该结论是最好的。  相似文献   

11.
设S是图G的一个边子集,若G-S不连通且每个分支的阶至少为k,则称S为G的一个k-限制边割.若G有k-限制连割,G的最小k-限制边割的边数称为G的k阶限制边连通度,记为λk(G).记ξk(G)=min{|[X,]|∶|X|=k,G|X|连通},若λk(G)=ξk(G),则称G是λK-最优的.证明了若对G中任意一对不相邻的顶点x,y都有d(x) d(y)≥n 2(k-2),且G不是G*k图,则G是λk-最优的.  相似文献   

12.
为精确估计网络的可靠度,我们需要最优化其图模型的限制边连通度,证明一个n≥11阶最小度δ(G)≥[n/2]-3的λ4-连通图G,在一定的条件下是λ4-最优的.进而,若n≥12,则G是超级-λ3图.并举例说明了最小度的下界是最好可能的.  相似文献   

13.
S?V(G)是G的一个顶点集且|S|≥k,其中2≤k≤n.连接S的树T叫作斯坦纳树.两棵斯坦纳树T1和T2称为内部不交的,当且仅当它们满足E(T1)∩E(T2)=?和V(T1)∩V(T2)=S.令κG(S)是G内部不交的斯坦纳树的最大数目,κk(G)=min{κG(S)∶S?V(G),|S|=k}定义为G的广义k-连通度.很显然,当|S|=2时,广义2-连通度κ2(G)就是经典连通度κ(G).因此广义连通度是经典连通度的推广.主要讨论泡序图Bn的广义4-连通度κ4(Bn).得到的结论是当n≥3时,κ4(Bn)=n-2.  相似文献   

14.
设G=(V,E)是有限简单无向图,U是G的一个边割,k是一正整数.若G-U的每个分支的阶至少为k,则称U为G的一个k阶限制边割.定义G的k阶限制边连通度λk(G)为G的k阶限制边割中最少的边数,达到最小的称为λk割.定义ξk(G)=min{(F):F是G的k阶连通子图},其中(F)表示恰好有一个端点在F上的边的数目.如果λk(G)=ξk(G),则称G是λk最优图.本文给出了二部图λ3最优性的一个原子条件.  相似文献   

15.
高敬振  张淑芹 《科学技术与工程》2007,7(15):3639-36413659
图G的m-限制边割是删除它以后G不连通,且留下的每个分支的阶至少为m的边子集;m-限制边割的最小基数称为m-限制边连通度。设G是连通(k-2)-正则图,阶至少为2k(k≥5)。证明了G的k-限制边连通度存在当且仅当G不属于一种特殊图类G^* k-2.  相似文献   

16.
m-限制边割将连通图G分离成阶不小于m的连通分支,图G的最小m-限制边割所含的边数称为图G的m-限制边通度,记作λm(G).对于包含m-限制边割的连通图G,有λm(G)≤ξm(G)(m≤3);如果λm(G)=ξm(G),则称图G是极大m-限制边连通的.本文证明:当n≥7时,无向广义De Bruijn图UBG(2,n)是极大m-限制边连通的(m={2,3}).  相似文献   

17.
图G的一个正常边染色φ若满足:∠u,v∈V(G),且dG(u,v)≤2都有f(u)≠f(v),其中f(u)=∑uw∈E(G)φ(uw),则称φ为图G的2-距离和可区别边染色。运用反证法,结合构造染色函数法,研究了无K4-子式图的2-距离和可区别边染色,确定了无K4-子式图的2-距离和可区别边色数的一个上界。  相似文献   

18.
如果图G的任意s个顶点的导出子图中至少含有t条边,则称G为[s,t]-图。设H是一个图,如果图G中任意一个同构于H的子图F,有G[N(F)-V(F)]连通,则称G是H-局部连通的。本文证明:阶数≥8的连通、P3-局部连通的[5,3]-图是1-2可扩的(这里P3表示3阶路)。  相似文献   

19.
图是λ′最优和超级λ′的充分条件   总被引:1,自引:1,他引:0  
设G是有限简单无向图,使G-S的每个分支都不含孤立的边割S称为G的限制边割.G的限制连连通度λ′(G)是G的限制边割之中最少的边数,定义ξ(G)=min{d(x)+d(y)-2;xy∈E(G)}为G的最小边度.如果λ′(G)=ξ(G),则称G是λ′最优的.若任意最小限制边割都弧立一边,则称图G是超级λ′的.应用范型度条件给出了图是λ′最优和超级λ′的令分条件.  相似文献   

20.
设S是连通图G中的一个边子集。若G S不连通且它的每个连通分支的阶至少为k,则称S是G的一个k限制边割。图G的最小k限制边割的边数称为G的k限制边连通度,记为λκ(G)。定义ξκ(G)=min{|[X,X]|:|X|=k,G[X]连通},其中X=V(G)\X。若λk (G)=ξk(G),则称G是极大k限制边连通的。设G是一个围长至少为5的λ3 连通图。本文证明了若G中不存在5个点u1,u2,v1,v2,v3使得d(ui,vj)≥3(i=1,2;j=1,2,3),则G是极大3限制边连通的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号