首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li X  Liu P  Liu W  Maye P  Zhang J  Zhang Y  Hurley M  Guo C  Boskey A  Sun L  Harris SE  Rowe DW  Ke HZ  Wu D 《Nature genetics》2005,37(9):945-952
Human and mouse genetic and in vitro evidence has shown that canonical Wnt signaling promotes bone formation, but we found that mice lacking the canonical Wnt antagonist Dickkopf2 (Dkk2) were osteopenic. We reaffirmed the finding that canonical Wnt signaling stimulates osteogenesis, including the differentiation from preosteoblasts to osteoblasts, in cultured osteoblast differentiation models, but we also found that canonical Wnts upregulated the expression of Dkk2 in osteoblasts. Although exogenous overexpression of Dkk before the expression of endogenous canonical Wnt (Wnt7b) suppressed osteogenesis in cultures, its expression after peak Wnt7b expression induced a phenotype resembling terminal osteoblast differentiation leading to mineralization. In addition, osteoblasts from Dkk2-null mice were poorly mineralized upon osteogenic induction in cultures, and Dkk2 deficiency led to attenuation of the expression of osteogenic markers, which could be partially reversed by exogenous expression of Dkk2. Taken together with the finding that Dkk2-null mice have increased numbers of osteoids, these data indicate that Dkk2 has a role in late stages of osteoblast differentiation into mineralized matrices. Because expression of another Wnt antagonist, FRP3, differs from Dkk2 expression in rescuing Dkk2 deficiency and regulating osteoblast differentiation, the effects of Dkk2 on terminal osteoblast differentiation may not be entirely mediated by its Wnt signaling antagonistic activity.  相似文献   

2.
Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development.  相似文献   

3.
4.
In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number.  相似文献   

5.
Kras is commonly mutated in colon cancers, but mutations in Nras are rare. We have used genetically engineered mice to determine whether and how these related oncogenes regulate homeostasis and tumorigenesis in the colon. Expression of K-Ras(G12D) in the colonic epithelium stimulated hyperproliferation in a Mek-dependent manner. N-Ras(G12D) did not alter the growth properties of the epithelium, but was able to confer resistance to apoptosis. In the context of an Apc-mutant colonic tumor, activation of K-Ras led to defects in terminal differentiation and expansion of putative stem cells within the tumor epithelium. This K-Ras tumor phenotype was associated with attenuated signaling through the MAPK pathway, and human colon cancer cells expressing mutant K-Ras were hypersensitive to inhibition of Raf, but not Mek. These studies demonstrate clear phenotypic differences between mutant Kras and Nras, and suggest that the oncogenic phenotype of mutant K-Ras might be mediated by noncanonical signaling through Ras effector pathways.  相似文献   

6.
Mouse embryos deficient in Gata3 die by 11 days post coitum (d.p.c.) from pathology of undetermined origin. We recently showed that Gata3-directed lacZ expression of a 625-kb Gata3 YAC transgene in mice mimics endogenous Gata3 expression, except in thymus and the sympathoadrenal system. As this transgene failed to overcome embryonic lethality (unpublished data and ref. 3) in Gata3-/- mice, we hypothesized that a neuroendocrine deficiency in the sympathetic nervous system (SNS) might cause embryonic lethality in these mutants. We find here that null mutation of Gata3 leads to reduced accumulation of Th (encoding tyrosine hydroxylase, Th) and Dbh (dopamine beta-hydroxylase, Dbh) mRNA, whereas several other SNS genes are unaffected. We show that Th and Dbh deficiencies lead to reduced noradrenaline in the SNS, and that noradrenaline deficiency is a proximal cause of death in mutants by feeding catechol intermediates to pregnant dams, thereby partially averting Gata3 mutation-induced lethality. These older, pharmacologically rescued mutants revealed abnormalities that previously could not be detected in untreated mutants. These late embryonic defects include renal hypoplasia and developmental defects in structures derived from cephalic neural crest cells. Thus we have shown that Gata3 has a role in the differentiation of multiple cell lineages during embryogenesis.  相似文献   

7.
Wnt signaling defines the colonic epithelial progenitor cell phenotype, and mutations in the gene adenomatous polyposis coli (APC) that activate the Wnt pathway cause the familial adenomatous polyposis coli (FAP) syndrome and most sporadic colon cancers. The mechanisms that regulate the transition of epithelial precursor cells into their differentiated derivatives are poorly characterized. We report that Indian hedgehog (Ihh) is expressed by mature colonocytes and regulates their differentiation in vitro and in vivo. Hedgehog (Hh) signaling restricts the expression of Wnt targets to the base of the colonic crypt in vivo, and transfection of Ihh into colon cancer cells leads to a downregulation of both components of the nuclear TCF4-beta-catenin complex and abrogates endogenous Wnt signaling in vitro. In turn, expression of Ihh is downregulated in polyps of individuals with FAP and expression of doxycycline-inducible dominant negative TCF4 (dnTCF4) restores Ihh expression in APC mutant DLD-1 colon cancer cells. These data identify a new Wnt-Hh axis in colonic epithelial renewal.  相似文献   

8.
Stem cell function is central for the maintenance of normal tissue homeostasis. Here we show that deletion of p38alpha mitogen-activated protein (MAP) kinase in adult mice results in increased proliferation and defective differentiation of lung stem and progenitor cells both in vivo and in vitro. We found that p38alpha positively regulates factors such as CCAAT/enhancer-binding protein that are required for lung cell differentiation. In addition, p38alpha controls self-renewal of the lung stem and progenitor cell population by inhibiting proliferation-inducing signals, most notably epidermal growth factor receptor. As a consequence, the inactivation of p38alpha leads to an immature and hyperproliferative lung epithelium that is highly sensitized to K-Ras(G12V)-induced tumorigenesis. Our results indicate that by coordinating proliferation and differentiation signals in lung stem and progenitor cells, p38alpha has a key role in the regulation of lung cell renewal and tumorigenesis.  相似文献   

9.
Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. Loci associated with FEVR map to 11q13-q23 (EVR1; OMIM 133780, ref. 1), Xp11.4 (EVR2; OMIM 305390, ref. 2) and 11p13-12 (EVR3; OMIM 605750, ref. 3). Here we have confirmed linkage to the 11q13-23 locus for autosomal dominant FEVR in one large multigenerational family and refined the disease locus to a genomic region spanning 1.55 Mb. Mutations in FZD4, encoding the putative Wnt receptor frizzled-4, segregated completely with affected individuals in the family and were detected in affected individuals from an additional unrelated family, but not in normal controls. FZD genes encode Wnt receptors, which are implicated in development and carcinogenesis. Injection of wildtype and mutated FZD4 into Xenopus laevis embryos revealed that wildtype, but not mutant, frizzled-4 activated calcium/calmodulin-dependent protein kinase II (CAMKII) and protein kinase C (PKC), components of the Wnt/Ca(2+) signaling pathway. In one of the mutants, altered subcellular trafficking led to defective signaling. These findings support a function for frizzled-4 in retinal angiogenesis and establish the first association between a Wnt receptor and human disease.  相似文献   

10.
The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development.  相似文献   

11.
During organogenesis, the foregut endoderm gives rise to the many different cell types that comprise the hepatopancreatic system, including hepatic, pancreatic and gallbladder cells, as well as the epithelial cells of the hepatopancreatic ductal system that connects these organs together and with the intestine. However, the mechanisms responsible for demarcating ducts versus organs are poorly understood. Here, we show that Fgf10 signaling from the adjacent mesenchyme is responsible for refining the boundaries between the hepatopancreatic duct and organs. In zebrafish fgf10 mutants, the hepatopancreatic ductal epithelium is severely dysmorphic, and cells of the hepatopancreatic ductal system and adjacent intestine misdifferentiate toward hepatic and pancreatic fates. Furthermore, Fgf10 also functions to prevent the differentiation of the proximal pancreas and liver into hepatic and pancreatic cells, respectively. These data shed light onto how the multipotent cells of the foregut endoderm, and subsequently those of the hepatopancreatic duct, are directed toward different organ fates.  相似文献   

12.
The Wnt signal-transduction pathway induces the nuclear translocation of membrane-bound beta-catenin (Catnb) and has a key role in cell-fate determination. Tight somatic regulation of this signal is essential, as uncontrolled nuclear accumulation of beta-catenin can cause developmental defects and tumorigenesis in the adult organism. The adenomatous polyposis coli gene (APC) is a major controller of the Wnt pathway and is essential to prevent tumorigenesis in a variety of tissues and organs. Here, we have investigated the effect of different mutations in Apc on the differentiation potential of mouse embryonic stem (ES) cells. We provide genetic and molecular evidence that the ability and sensitivity of ES cells to differentiate into the three germ layers is inhibited by increased doses of beta-catenin by specific Apc mutations. These range from a severe differentiation blockade in Apc alleles completely deficient in beta-catenin regulation to more specific neuroectodermal, dorsal mesodermal and endodermal defects in more hypomorphic alleles. Accordingly, a targeted oncogenic mutation in Catnb also affects the differentiation potential of ES cells. Expression profiling of wildtype and Apc-mutated teratomas supports the differentiation defects at the molecular level and pinpoints a large number of downstream structural and regulating genes. Chimeric experiments showed that this effect is cell-autonomous. Our results imply that constitutive activation of the Apc/beta-catenin signaling pathway results in differentiation defects in tissue homeostasis, and possibly underlies tumorigenesis in the colon and other self-renewing tissues.  相似文献   

13.
Intestinal polyposis, a precancerous neoplasia, results primarily from an abnormal increase in the number of crypts, which contain intestinal stem cells (ISCs). In mice, widespread deletion of the tumor suppressor Phosphatase and tensin homolog (PTEN) generates hamartomatous intestinal polyps with epithelial and stromal involvement. Using this model, we have established the relationship between stem cells and polyp and tumor formation. PTEN helps govern the proliferation rate and number of ISCs and loss of PTEN results in an excess of ISCs. In PTEN-deficient mice, excess ISCs initiate de novo crypt formation and crypt fission, recapitulating crypt production in fetal and neonatal intestine. The PTEN-Akt pathway probably governs stem cell activation by helping control nuclear localization of the Wnt pathway effector beta-catenin. Akt phosphorylates beta-catenin at Ser552, resulting in a nuclear-localized form in ISCs. Our observations show that intestinal polyposis is initiated by PTEN-deficient ISCs that undergo excessive proliferation driven by Akt activation and nuclear localization of beta-catenin.  相似文献   

14.
Cell-fate specification and cell-cell signaling have been well studied during vulva development in Caenorhabditis elegans and provide a paradigm in evolutionary developmental biology. Pristionchus pacificus has been developed as a 'satellite' organism with an integrated physical and genetic map that allows detailed comparisons to C. elegans. A common aspect of vulva formation in both species is the polarization of the P7.p lineage, which is responsible for vulval symmetry. In C. elegans, Wnt signaling is crucial for P7.p cell-fate patterning; nothing is known about vulval symmetry in P. pacificus. We isolated mutations that disrupt polarization of the P7.p lineage in P. pacificus and found that the corresponding gene encodes a Frizzled-like molecule. In addition, mutations in Ppa-lin-17 (encoding Frizzled) and morpholino knock-down of Ppa-lin-44 (encoding Wnt), Ppa-egl-20 (encoding Wnt), Ppa-mig-5 (encoding Dsh), Ppa-apr-1 (encoding APC) and Ppa-bar-1 (encoding beta-catenin) results in gonad-independent vulva differentiation, indicating that these genes have a role in a negative signaling process. In contrast, in C. elegans, Wnt signaling has a positive role in vulva induction, and mutations in bar-1 result in a hypoinduced phenotype. Therefore, whereas the molecular mechanisms that generate vulval symmetry are conserved, the genetic control of vulva induction diversified during evolution.  相似文献   

15.
16.
Deregulated expression of c-Myc depletes epidermal stem cells   总被引:30,自引:0,他引:30  
The beta-catenin/TCF signaling pathway is essential for the maintenance of epithelial stem cells in the small intestine. c-Myc a downstream target of beta-catenin/TCF (ref. 2), can induce differentiation of epidermal stem cells in vitro. To determine the role of c-Myc in epidermal stem cells in vivo, we have targeted expression of human MYC2 to the hair follicles and the basal layer of mouse epidermis using a keratin 14 vector (K14.MYC2). Adult K14.MYC2 mice gradually lose their hair and develop spontaneous ulcerated lesions due to a severe impairment in wound healing; their keratinocytes show impaired migration in response to wounding. The expression of beta1 integrin, which is preferentially expressed in epidermal stem cells is unusually low in the epidermis of K14.MYC2 mice. Label-retaining analysis to identify epidermal stem cells reveals a 75% reduction in the number of stem cells in 3-month-old K14.MYC2 mice, compared with wildtype mice. We conclude that deregulated expression of c-Myc in stem cells reduces beta1 integrin expression, which is essential to both keratinocyte migration and stem cell maintenance.  相似文献   

17.
Bmi1 is expressed in vivo in intestinal stem cells   总被引:1,自引:0,他引:1  
Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of beta-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1(+) cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.  相似文献   

18.
Fungiform taste papillae form a regular array on the dorsal tongue. Taste buds arise from papilla epithelium and, unusually for epithelial derivatives, synapse with neurons, release neurotransmitters and generate receptor and action potentials. Despite the importance of taste as one of our five senses, genetic analyses of taste papilla and bud development are lacking. We demonstrate that Wnt-beta-catenin signaling is activated in developing fungiform placodes and taste bud cells. A dominant stabilizing mutation of epithelial beta-catenin causes massive overproduction of enlarged fungiform papillae and taste buds. Likewise, genetic deletion of epithelial beta-catenin or inhibition of Wnt-beta-catenin signaling by ectopic dickkopf1 (Dkk1) blocks initiation of fungiform papilla morphogenesis. Ectopic papillae are innervated in the stabilizing beta-catenin mutant, whereas ectopic Dkk1 causes absence of lingual epithelial innervation. Thus, Wnt-beta-catenin signaling is critical for fungiform papilla and taste bud development. Altered regulation of this pathway may underlie evolutionary changes in taste papilla patterning.  相似文献   

19.
Inheritance of one defective BRCA2 allele predisposes humans to breast cancer. To establish a mouse model for BRCA2-associated breast cancer, we generated mouse conditional mutants with BRCA2 and/or p53 inactivated in various epithelial tissues, including mammary-gland epithelium. Although no tumors arose in mice carrying conditional Brca2 alleles, mammary and skin tumors developed frequently in females carrying conditional Brca2 and Trp53 alleles. The presence of one wildtype Brca2 allele resulted in a markedly delayed tumor formation; loss of the wildtype Brca2 allele occurred in a subset of these tumors. Our results show that inactivation of BRCA2 and of p53 combine to mediate mammary tumorigenesis, and indicate that disruption of the p53 pathway is pivotal in BRCA2-associated breast cancer.  相似文献   

20.
The Wnt signaling pathway is essential for development and organogenesis. Wnt signaling stabilizes beta-catenin, which accumulates in the cytoplasm, binds to 1-cell factor (TCF; also known as lymphocyte enhancer-binding factor, LEF) and then upregulates downstream genes. Mutations in CTNNB1 (encoding beta-catenin) or APC (adenomatous polyposis coli) have been reported in human neoplasms including colon cancers and hepatocellular carcinomas (HCCs). Because HCC5 tend to show accumulation of beta-catenin more often than mutations in CTNNB1, we looked for mutations in AXIN1, encoding a key factor for Wnt signaling, in 6 HCC cell lines and 100 primary HCC5. Among the 4 cell lines and 87 HCC5 in which we did not detect CTNNB1 mutations, we identified AXIN1 mutations in 3 cell lines and 6 mutations in 5 of the primary HCCs. In cell lines containing mutations in either gene, we observed increased DNA binding of TCF associated with beta-catenin in nuclei. Adenovirus mediated gene transfer of wild-type AXINI induced apoptosis in hepatocellular and colorectal cancer cells that had accumulated beta-catenin as a consequence of either APC, CTNNB1 or AXIN1 mutation, suggesting that axin may be an effective therapeutic molecule for suppressing growth of hepatocellular and colorectal cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号