首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using (NH4)2SO4. The optimized reaction conditions are defined as an (NH4)2SO4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of (NH4)2SO4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric–differential thermal analysis was used for (NH4)2SO4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle–Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.  相似文献   

2.
Calculations of d-d transitions and the axial zero-field splitting parameter D in crystalline KHSO4:Mn2+ have been undertaken, with consideration of the ninth O2– ligand. Energy level values calculated in a tetragonal field are in good agreement with experimentally observed values. Occasionally degenerate energy levels of 4A1(4Eg(G)) and 4A1(4A1g(G)) were found in the tetragonal crystal field. The calculated value of D is in good agreement with experimental value for KHSO4:Mn2+.  相似文献   

3.
Spinel compounds LiNi0.5Mn1.3Ti0.2O4 (LNMTO) and Li4Ti5O12 (LTO) were synthesized by different methods. The particle sizes of LNMTO and LTO are 0.5–2 and 0.5–0.8 μm, respectively. The LNMTO/LTO cell exhibits better electrochemical properties at both a low current rate of 0.2C and a high current rate of 1C. When the specific capacity was determined based on the mass of the LNMTO cathode, the LNMTO/LTO cell delivered 137 mA·h·g−1 at 0.2C and 118.2 mA·h·g−1 at 1C, and the corresponding capacity retentions after 30 cycles are 88.5% and 92.4%, respectively.  相似文献   

4.
With the development of ultrafast laser technique,the femtosecond laser electric field is comparable to themolecular field experienced by valence electrons. In thiscase, the classical quantum mechanical theory, based onperturbation theory, becomes inapplicable. Theoreticalunderstanding of the interaction of molecules with intenselaser radiation is quite difficult. The Coulomb explosionhas been extensively studied[1—10] and explained by somesemiclassical models, such as the above threshold ion…  相似文献   

5.
A coordination complex was synthesized from NiCl2 and dipeptide glycylglycine(GG). It was characterized by element analysis, NMR and TG methods, and then was determined to be Ni(C4HsN2O3)2Cl2. Using an isoperibolic reaction calorimeter, the standard molar enthalpy of formation of Ni(GG)2Cl2(solid) has been determined to be -(1 674.66±2.02) kJ · mol^-1 at 298.15 K.  相似文献   

6.
Superparamagnetic carbon-coated Fe3O4 nanoparticles with high magnetization (85 emu·g-1) and high crystallinity were synthesized using polyethylene glycol-4000 (PEG (4000)) as a carbon source. Fe3O4 water-based bilayer-surfactant-enveloped ferrofluids were subsequently prepared using sodium oleate and PEG (4000) as dispersants. Analyses using X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy indicate that the Fe3O4 nanoparticles with a bilayer surfactant coating retain the inverse spinel-type structure and are successfully coated with sodium oleate and PEG (4000). Transmission electron microscopy, vibrating sample magnetometry, and particle-size analysis results indicate that the coated Fe3O4 nanoparticles also retain the good saturation magnetization of Fe3O4 (79.6 emu·g-1) and that the particle size of the bilayer-surfactant-enveloped Fe3O4 nanoparticles is 42.97 nm, which is substantially smaller than that of the unmodified Fe3O4 nanoparticles (486.2 nm). UV–vis and zeta-potential analyses reveal that the ferrofluids does not agglomerate for 120 h at a concentration of 4 g·L-1, which indicates that the ferrofluids are highly stable.  相似文献   

7.
Ag nanoparticles were sputter-deposited on ammonium persulfate ((NH4)2S2O8) powder to obtain (NH4)2S2O8-Ag powder, which was used to synthesize the HCl-doped polyaniline-Ag (HCl-PANI-Ag) composite via a polymerization procedure. The Ag nanoparticles were dispersed in the HCl-PANI matrix, and their sizes mainly ranged from 3 to 6 nm. The Ag nanoparticles did not affect the structure of emeraldine salt in the composite, and they increased the ordered crystalline regions in the HCl-PANI matrix. The HCl-PANI-Ag composite had a conductivity of (6.8 ±0.1) S/cm, which is about four times larger than that of the HCl-PANI. The charge transport mechanism in the composite is explained by the three-dimensional Mott variable-range hopping (3D-Mott-VRH).  相似文献   

8.
Highly uniform and tight adhering of Fe3O4 particles on carbon fiber film (Fe3O4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten transfer path and buffer the volume expansion during charge-discharge cycling. Herein, the obtained Fe3O4/CFF anode exhibits a stable cycling performance and excellent high rate capability. The cell delivers a reversible capacity of 1 711 mAh·g–1 at a current density of 100 mA·g–1 after 100 cycles. Even at a high rate density of 2 A·g–1, the specific capacity also can maintain 1 034 mAh·g–1 after 100 cycles. The simplified fabrication is featured with low-cost and this binder-free perspective holds great potential in mass-production of high-performance metal oxide electrochemical devices.  相似文献   

9.
The pore structure of Cr2O3/Al2O3 catalysts and the surface chemical properties of these pores were characterized by positron lifetime and coincidence Doppler broadening (CDB) measurements. Four lifetime components could be resolved from the positron lifetime spectrum, with two long lifetime components and two short lifetime components. The two long lifetimes τ4 and τ3 are attributed to ortho-positronium (o-Ps) annihilation in large pores and microvoids, respectively. With increasing Cr2O3 content, both τ4 and its intensity I4 show sharp decrease, while τ3 and its intensity I3 keep nearly unchanged. The Doppler broadening S parameters also show sharp decrease with increasing Cr2O3 content. Detailed analysis of the CDB spectrum reveals that the parapositronium (p-Ps) intensity also decreases with increasing Cr2O3 content. This indicates that the change of o-Ps lifetime τ4 is due to the chemical quenching by Cr2O3 but not spin-conversion of positronium. The decrease of o-Ps intensity I4 indicates that Cr2O3 also inhibits positronium formation.  相似文献   

10.
Amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were successfully fabricated by mechanical alloying. The microstructure, glass-forming ability, and crystallization behavior of amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The isothermal crystallization kinetics was analyzed by the Johnson–Mehl–Avrami equation. In the results, the supercooled liquid region of the amorphous alloy is as high as 81 K, as determined by non-isothermal DSC curves. The activation energy for crystallization is as high as 312.6 kJ·mol?1 obtained by Kissinger and Ozawa analyses. The values of Avrami exponent (n) imply that the crystallization is dominated by interface-controlled three-dimensional growth in the early stage and the end stage and by diffusion-controlled two- or three-dimensional growth in the middle stage. In addition, the amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were sintered under 2 GPa at temperatures of 673 K and 723 K. The results show that the Vickers hardness of the compacted powders is as high as Hv 1215.  相似文献   

11.
Ammoxidation of 3,4-dichlorotoluene (DCT) to prepare 3,4-dichlorobenzonitrile (DCBN) over silica supported vanadium phosphorus oxide catalysts has been studied. On the VPO/SiO2 catalyst, the influence of the reaction temperature, the molar ratio of air/DCT, the molar ratio of NH3/DCT in the feed gas and the space velocity (v 1) on the conversion, yield and selectivity was observed. The most appropriate reaction condition is: reactionT=673 K,n(DCT):n(NH3):n(air)=1:7:30 andv 1=250 h−1. At this optimum reaction condition, the conversion of DCT is 97.8%; the molar yield of DCBN is 67.4%. It was found that the addition of element phosphorus can improve the yield of DCBN compared with VO/SiO2 catalyst. Foundation item: Supported by Youth Chen-Guang Project of the Committee of Science and Technology of Wuhan (20015005042) Biography: Huang Chi(1972-), male, Ph D, Lecture, research direction: ammoxidation.  相似文献   

12.
A spherical-like Ni0.6Co0.2Mn0.2(OH)2 precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2 were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge-discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2 material obtained by calcination at 900℃ displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh·g-1 at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh·g-1 at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh·g-1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively.  相似文献   

13.
TiO2-Graphene Oxide intercalated composite (TiO2-Graphene Oxide) has been successfully prepared at low temperature (80°C) with graphite oxide (GO) and titanium sulfate (Ti(SO4)2) as initial reactants.GO was firstly exfoliated by NaOH and formed single and multi-layered graphite oxide mixture which can be defined as graphene oxide,[TiO]2+ induced by the hydrolysis of Ti(SO4)2 diffused into graphene oxide interlayer by electrostatic attraction.The nucleation and growth of TiO2 crystallites took place at low temperature and TiO2-Graphene Oxide composite was successfully synthesized.Furthermore,the photocatalytic properties of TiO2-Graphene Oxide under the irradiation of UV light were also studied.The results show that the degradation rate of methyl orange is 1.16 mg min-1 g-1(refer to the efficiency of the initial 15 min).Compared with P25 powder,this kind of intercalation composite owns much better efficiency.On the other hand,the reusable properties and stable properties of TiO2-Graphene Oxide intercalated composite are also discussed in this paper.At last,crystalline structure,interface status,thermal properties and microscopic structure of TiO2-Graphene Oxide were characterized by X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),thermogravimetric analysis (TGA),field emission scanning electron microscopy (FESEM) and high-resolution Transmission Electron Microscopy (HRTEM).Also,we have analyzed major influencing factors and mechanism of the composite structures which evidently improve the photocatalytic properties.  相似文献   

14.
The giant magneto-optical Faraday effect of nanometer ferromagnetic metal-semiconductor matrix Fe-ln2O3 granular films prepared by the radio frequency sputtering are studied. The result shows that the Faraday rotation angle θF value of the granular film samples with Fe volume fraction x = 35% is of the order of 10^5(°)/cm at room temperature. Temperature dependence of the Faraday rotation angle θF of Fe0.35(In2O3)0.65 granular films shows that θF value below 10 K increases rapidly with the decrease of the temperature, and when T= 4.2 K, θF value is 106(°)/cm. Through the study of the dependence of low field susceptibility on temperature and the hysteresis loops at different temperatures, it has been found that when the temperature decreases to a critical point Tp = 10 K, the transformation of state from ferro-agnetic to spin-glass-like occurs in Fe0.35(In2O3)0.65 granular films. The remarkable increase of the Faraday rotation angle θF value of Fe0.35(In2O3)0.65 granular films below 10 K seems to arise from the sp-d exchange interaction of the granular film samples in the spin-glass-like state.  相似文献   

15.
Carbon-coated LiFePO4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C (1.0C = 170 mA·g-1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mAh·g-1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mAh·g-1, even at 2C.  相似文献   

16.
We report a method to synthesize both organicinorganic CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskite nanocrystals in nonpolar solvent at high temperature. The cesium oleate and CH3NH3Br (MABr) are prepared and then injected into the nonpolar solvent of octadecene including oleic acid, oleylamine, and lead halide. In the synthesis of organic-inorganic perovskites of CH3NH3PbBr3, the frequently-used polar solvent of dimethylformamide or other polar solvents are not used. The prepared CsPbBr3 nanocrystals are spherical nanoparticles with the diameter of 250 nm. The CH3NH3PbBr3 perovskites are micro- scale hexagonal nanoplatelets. The colloidal perovskites exhibit high-efficient fluorescence and excellent stability.  相似文献   

17.
Novel N-doped TiO2 (denoted as N-NTA600) was prepared by treating nanotube titanic acid (NTA) in NH3 flow. Its visible light photocatalytic activity,evaluated by decoloration reaction of methylene blue,is higher than that of N-P25(600) prepared by treatment of P25-TiO2 in the same condition. It is suggested that the origin of visible-light photocatalytic activity is single-electron-trapped oxygen vacancy (Vo·) modified by chemisorbed NO.  相似文献   

18.
Si4+-doped BaZr(BO3)2:Eu3+ phosphors are prepared by a conventional solid-state reaction. The influence of Si4+ addition on the charge transfer state of Eu3+-O2– and photoluminescence (PL) properties of BaZr(BO3)2:Eu3+ are discussed. Room temperature PL spectra indicated that efficient emission is obtained by Si doping. Increased values for the peak-peak ratio (PPR) of BaZr(BO3)2:Eu3+ at higher Si doping concentrations implied that the Eu3+ ion is located in a more asymmetric environment in BaZr0.8Si0.2(BO3)2:Eu3+ than in the undoped samples. The Judd-Ofelt parameters Ωλ (λ=2,4) were calculated from the PL data, giving results that were consistent with those from the PPR. The maximum radiative quantum efficiency was achieved at a Si doping concentration of 20 mol%.  相似文献   

19.
The synthesis and up-conversion luminescent properties of YTaO4:Er^3+ and YTaO4:Er^3+/Yb^3+ are reported for the first time. According to the measurement results of up-conversion spectra, Yb^3+ co-doping can remarkably enhance the green (^2H11/2/^4S3/2→^4I15/2) and red (^4F9/2→^4I15/2) emissions, but depress the infrared emission (^4I9/2→^4I15/2). With the increase of the Yb^3+ concentration, the intensity of green emission increases, after that, when the Yb^3+ concentration increases continuously, the intensity of green emission decreases, while those of the red and infrared emissions increase and decrease alternately. In addition, the up-conversion mechanisms of Er^3+ doped and Er^3+/Yb^3+ co-doped YTaO4 are also discussed. It is found that the transform of up-conversion mechanism from two-step energy transfer to cooperating sensitization takes place when Yb^3+ concentration is increased up to 12 mol%. With the further increase of Yb^3+ concentration, the energy-back-transfer gradually becomes the dominant up-conversion mechanism, which results in the quenching of the green emission and slight increasing of the red and infrared emissions.  相似文献   

20.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号