首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The non-classical HLA class I molecule HLA-G was initially shown to play a major role in feto–maternal tolerance. Since this discovery, it has been established that HLA-G is a tolerogenic molecule which participates to the control of the immune response. In this review, we summarize the recent advances on (1) the multiple structures of HLA-G, which are closely associated with their role in the inhibition of NK cell cytotoxicity, (2) the factors that regulate the expression of HLA-G and its receptors, (3) the mechanism of action of HLA-G at the immunological synapse and through trogocytosis, and (4) the generation of suppressive cells through HLA-G. Moreover, we also review recent findings on the non-immunological functions of HLA-G in erythropoiesis and angiogenesis.  相似文献   

2.
3.
In the early 1990s, the search for protein kinases led to the discovery of a novel family of non-receptor tyrosine kinases, the Janus kinases or JAKs. These proteins were unusual because they contained two kinase homology domains and no other known signaling modules. It soon became clear that these were not ‘just another’ type of kinase. Their ability to complement mutant cells insensitive to interferons and to be activated by a variety of cytokines demonstrated their central signaling function. Now, as we approach the end of the decade, it is evident from biochemical studies to knockout mice that JAKs play non-redundant functions in development, differentiation, and host defense mechanisms. Here, recent progress is reviewed, with particular emphasis on structure-function studies aimed at revealing how this family of tyrosine kinases is regulated.  相似文献   

4.
Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4+ T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens.  相似文献   

5.
The role of M cells in mucosal immunity   总被引:3,自引:0,他引:3  
Mucosa-associated lymphoid tissue in the respiratory and digestive tracts are covered by a specialized epithelium, the follicle-associated epithelium, which includes M cells, which are specialized for the uptake and transcytosis of macromolecules and microorganisms. Following transcytosis, antigens are released to cells of the immune system in lymphoid aggregates beneath the epithelium where antigen processing and presentation and stimulation of specific B and T lymphocytes are achieved. Circulation of the lymphoid cells enables their homing to their original, and other, mucosal sites where they exert the effector function. Such a response may be dominated by secretory immunoglobulin A release and may include cytotoxic T lymphocyte action. Binding of particles to the apical M cell membrane may be nonspecific or due to specific interaction between molecules such as integrins and lectins. Exploiting the specific binding to M cells is an aim for mucosal vaccination, for example to increase the efficiency of uptake of an oral vaccine by its conjugation to an M-cell-specific molecule. Alternatively, an M-cell-specific live vector, such as attenuated Salmonella bacteria, may be used to deliver epitopes of other organisms. Mucosal vaccination efficiency may also be enhanced by a temporary increase in the number of M cells. Therefore, investigation of the properties and ontogeny of M cells must be pursued to allow the development of better mucosal vaccines for the future.  相似文献   

6.
HLA-G plays a particular role during pregnancy in which its expression at the feto–maternal barrier participates into the tolerance of the allogenic foetus. HLA-G has also been demonstrated to be expressed in some transplanted patients, suggesting that it regulates the allogenic response. In vitro data indicate that HLA-G modulates NK cells, T cells, and DC maturation through its interactions with various inhibitory receptors. In this paper, we will review the data reporting the HLA-G involvement of HLA-G in human organ transplantation, then factors that can modulate HLA-G, and finally the use of HLA-G as a therapeutic tool in organ transplantation.  相似文献   

7.
Langerhans cells are immature skin-homing dendritic cells that furnish the epidermis with an immune surveillance system, and translate information between the internal and external milieu. Dendritic cells, in particular Langerhans cells, are gaining prominence as one of the potential principal players orchestrating the decision between immunity and tolerance. Langerhans cells capture aberrant self-antigen and pathogen-derived antigen for display to the efferent immune response. Recent evidence suggests redundancy in the antigen-presenting function of Langerhans cells, with dermal dendritic subsets capable of fulfilling an analogous role. There is mounting evidence that Langerhans cells can cross-prime T cells to recognize antigens. Langerhans cells are proposed to stimulate T regulatory cells, and are implicated in the pathogenesis of cutaneous T cell lymphoma.The phenotype of Langerhans cells, which may be tolerogenic or immunogenic, appears to depend on their state of maturity, inciting immunogen and cytokine environment, offering the potential for manipulation in immunotherapy. Received 6 August 2008; received after revision 18 September 2008; accepted 13 October 2008  相似文献   

8.
Toll-like receptors (TLRs) are a family of pattern recognition receptors that mediate innate immune responses to stimuli from pathogens or endogenous signals. Under various pathological conditions, the central nervous system (CNS) mounts a well-organized innate immune response, in which glial cells, in particular microglia, are activated. Further, the innate immune system has emerged as a promising target for therapeutic control of development and persistence of chronic pain. Especially, microglial cells respond to peripheral and central infection, injury, and other stressor signals arriving at the CNS and initiate a CNS immune activation that might contribute to chronic pain facilitation. In the orchestration of this limited immune reaction, TLRs on microglia appear to be most relevant in triggering and tailoring microglial activation, which might be a driving force of chronic pain. New therapeutic approaches targeting the CNS innate immune system may achieve the essential pharmacological control of chronic pain. Received 21 November 2006; received after revision 8 January 2007; accepted 7 February 2007  相似文献   

9.
10.
The dual role model for p53 in maintaining genomic integrity   总被引:11,自引:0,他引:11  
The tumour suppressor p53 is a potent mediator of cellular responses against genotoxic insults. In this review we describe the multiple functions of p53 in response to DNA damage, with an emphasis on p53's role in DNA repair. We summarize data demonstrating that p53 actively participates in various processes of DNA repair and DNA recombination via its ability to interact with components of the repair and recombination machinery, and by its various biochemical activities. An important aspect in evaluating p53 functions is provided by the finding that the core domain of p53 harbours two mutually exclusive biochemical activities, sequence-specific DNA binding required for its transactivation function, and 3'-5' exonuclease activity, possibly involved in aspects of DNA repair. Based on the finding that modifications of p53 which lead to activation of its sequence-specific DNA-binding activity result in inactivation of its 3'-5' exonuclease activity, we propose that p53 exerts its functions as a 'guardian of the genome' at various levels: in its noninduced state, p53 should not be regarded as a 'dead' protein but, for example, via its exonuclease activity might be actively involved in prevention and repair of endogenous DNA damage. Upon induction through exogenous DNA damage, p53 will exert its well-documented functions as a superior response element in various types of cellular stress. This dual role model for p53 in maintaining genomic integrity significantly enhances p53's possibilities as a guardian of the genome.  相似文献   

11.
12.
13.
14.
Zusammenfassung Die Röntgenbestrahlung des Kopfes junger Ratten verursacht eine vermehrte DNS-Synthese im Thymus, was mit der Freisetzung von Wachstumshormon-ähnlichen Substanzen in Zusammenhang gebracht wird.

Acknowledgment. This project was supported in part by a grant from the Israel Cancer Association.  相似文献   

15.
Recent advances in research have greatly increased our understanding of the importance of the gut microbiota. Bacterial colonization of the intestine is critical to the normal development of many aspects of physiology such as the immune and endocrine systems. It is emerging that the influence of the gut microbiota also extends to modulation of host neural development. Furthermore, the overall balance in composition of the microbiota, together with the influence of pivotal species that induce specific responses, can modulate adult neural function, peripherally and centrally. Effects of commensal gut bacteria in adult animals include protection from the central effects of infection and inflammation as well as modulation of normal behavioral responses. There is now robust evidence that gut bacteria influence the enteric nervous system, an effect that may contribute to afferent signaling to the brain. The vagus nerve has also emerged as an important means of communicating signals from gut bacteria to the CNS. Further understanding of the mechanisms underlying microbiome–gut–brain communication will provide us with new insight into the symbiotic relationship between gut microbiota and their mammalian hosts and help us identify the potential for microbial-based therapeutic strategies to aid in the treatment of mood disorders.  相似文献   

16.
Summary Coupling of peptide alkylthiol esters with amino acid derivatives in the presence of pivalic acid or 2-hydroxypyridine proceeds without racemization. A dual role of alkylthiol esters as protective and reactive functions in peptide synthesis was well proved.  相似文献   

17.
The central nervous system (CNS) is capable of gathering information on the body’s nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus.  相似文献   

18.
Riassunto Viene descritta una nuova via efferente della catena ganglionare diPeriplaneta americana, che origina nel 1° ganglio addominale, raggiunge i nervi cercali (NXI) ed è interrotta da sinapsi in ciascuno dei sei gangli addominali. Vengono riferiti la velocità di conduzione nei connettivi ed i tempi di trasmissione a livello dei gangli.  相似文献   

19.
Serotonin metabolism in the CNS in cerebellar ataxic mice   总被引:2,自引:0,他引:2  
K Ohsugi  K Adachi  K Ando 《Experientia》1986,42(11-12):1245-1247
The metabolism of 5-hydroxytryptamine (5-HT) in the CNS was investigated in four kinds of morphologically different ataxic mice; reeler, staggerer, weaver and Purkinje cell degeneration mutants, and in hypocerebellar mice experimentally produced by injection of cytosine arabinoside. 5-HT and 5-hydroxyidoleacetic acid concentrations and tryptophan hydroxylase (TrpOH) activity were measured in the cerebrum, cerebellum and brain stem, respectively. TrpOH activity was significantly reduced only in the reeler mouse. The enhancements of the cerebellar 5-HT metabolism observed in the ataxic mice other than the reeler were supposed to be pseudo-enhancements subsequent to the cerebellar hypoplasia.  相似文献   

20.
Since we live in a dirty environment, we have developed many host defenses to contend with microorganisms. The epithelial lining of our skin, gastrointestinal tract and bronchial tree produces a number of antibacterial peptides, and our phagocytic neutrophils rapidly ingest and enzymatically degrade invading organisms, as well as produce peptides and enzymes with antimicrobial activities. Some of these antimicrobial moieties also appear to alert host cells involved in both innate host defense and adaptive immune responses. The epithelial cells are a source of constitutively produced beta defensin (HBD1) and proinflammatory cytokine-inducible beta defensins (HBD2 and -3) and cathelicidin (LL37). The neutrophils-derived antimicrobial peptides are released on demand from their cytoplasmic granules. They include the enzymes cathepsin G and chymase, azurocidin, a defensins and cathelicidin. In contrast, C5a and C3b are produced by activation of the serum complement cascade. The antimicrobial moieties direct the migration and activate target cells by interacting with selected G-protein-coupled seven-transmembrane receptors (GPCRs) on cell surfaces. The beta defensins interact with the CCR6 chemokine GPCRs, whereas cathelicidins interact with the low-affinity FPRL-1 receptors. The neutrophil-derived cathepsin G acts on the high-affinity FMLP receptor (GPCR) known as FPR, while the receptors for chymase and azurocidin have not been identified as yet. The serum-derived C5a uses a GPCR known as C5aR to mediate its chemotactic and cell-activating effects. Consequently, all these ligand-receptor interactions in addition to mediating chemotaxis also activate receptor-expressing cells to produce other mediators of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号