首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
Cryopyrin activates the inflammasome in response to toxins and ATP   总被引:3,自引:0,他引:3  
A crucial part of the innate immune response is the assembly of the inflammasome, a cytosolic complex of proteins that activates caspase-1 to process the proinflammatory cytokines interleukin (IL)-1beta and IL-18. The adaptor protein ASC is essential for inflammasome function, binding directly to caspase-1 (refs 3, 4), but the triggers of this interaction are less clear. ASC also interacts with the adaptor cryopyrin (also known as NALP3 or CIAS1). Activating mutations in cryopyrin are associated with familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal onset multisystem inflammatory disease, diseases that are characterized by excessive production of IL-1beta. Here we show that cryopyrin-deficient macrophages cannot activate caspase-1 in response to Toll-like receptor agonists plus ATP, the latter activating the P2X7 receptor to decrease intracellular K+ levels. The release of IL-1beta in response to nigericin, a potassium ionophore, and maitotoxin, a potent marine toxin, was also found to be dependent on cryopyrin. In contrast to Asc-/- macrophages, cells deficient in the gene encoding cryopyrin (Cias1-/-) activated caspase-1 and secreted normal levels of IL-1beta and IL-18 when infected with Gram-negative Salmonella typhimurium or Francisella tularensis. Macrophages exposed to Gram-positive Staphylococcus aureus or Listeria monocytogenes, however, required both ASC and cryopyrin to activate caspase-1 and secrete IL-1beta. Therefore, cryopyrin is essential for inflammasome activation in response to signalling pathways triggered specifically by ATP, nigericin, maitotoxin, S. aureus or L. monocytogenes.  相似文献   

2.
Gout-associated uric acid crystals activate the NALP3 inflammasome   总被引:4,自引:0,他引:4  
Martinon F  Pétrilli V  Mayor A  Tardivel A  Tschopp J 《Nature》2006,440(7081):237-241
Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a 'danger signal' released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1beta and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1beta activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1beta receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.  相似文献   

3.
Specific adaptors regulate the activation of initiator caspases; for example, FADD and Apaf-1 engage caspases 8 and 9, respectively. The adaptors ASC, Ipaf and RIP2 have each been proposed to regulate caspase-1 (also called interleukin (IL)-1 converting enzyme), which is activated within the 'inflammasome', a complex comprising several adaptors. Here we show the impact of ASC-, Ipaf- or RIP2-deficiency on inflammasome function. ASC was essential for extracellular ATP-driven activation of caspase-1 in toll-like receptor (TLR)-stimulated macrophages. Accordingly, ASC-deficient macrophages exhibited defective maturation of IL-1beta and IL-18, and ASC-null mice were resistant to lipopolysaccharide-induced endotoxic shock. Furthermore, activation of caspase-1 in response to an intracellular pathogen (Salmonella typhimurium) was abrogated severely in ASC-null macrophages. Unexpectedly, Ipaf-deficient macrophages activated caspase-1 in response to TLR plus ATP stimulation but not S. typhimurium. Caspase-1 activation was not compromised by loss of RIP2. These data show that whereas ASC is key to caspase-1 activation within the inflammasome, Ipaf provides a special conduit to the inflammasome for signals triggered by intracellular pathogens. Notably, cell death triggered by stimuli that engage caspase-1 was ablated in macrophages lacking either ASC or Ipaf, suggesting a coupling between the inflammatory and cell death pathways.  相似文献   

4.
Aluminium adjuvants, typically referred to as 'alum', are the most commonly used adjuvants in human and animal vaccines worldwide, yet the mechanism underlying the stimulation of the immune system by alum remains unknown. Toll-like receptors are critical in sensing infections and are therefore common targets of various adjuvants used in immunological studies. Although alum is known to induce the production of proinflammatory cytokines in vitro, it has been repeatedly demonstrated that alum does not require intact Toll-like receptor signalling to activate the immune system. Here we show that aluminium adjuvants activate an intracellular innate immune response system called the Nalp3 (also known as cryopyrin, CIAS1 or NLRP3) inflammasome. Production of the pro-inflammatory cytokines interleukin-1beta and interleukin-18 by macrophages in response to alum in vitro required intact inflammasome signalling. Furthermore, in vivo, mice deficient in Nalp3, ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) or caspase-1 failed to mount a significant antibody response to an antigen administered with aluminium adjuvants, whereas the response to complete Freund's adjuvant remained intact. We identify the Nalp3 inflammasome as a crucial element in the adjuvant effect of aluminium adjuvants; in addition, we show that the innate inflammasome pathway can direct a humoral adaptive immune response. This is likely to affect how we design effective, but safe, adjuvants in the future.  相似文献   

5.
Non-canonical inflammasome activation targets caspase-11   总被引:1,自引:0,他引:1  
Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4) is critical for caspase-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11(-/-) mice, exhibited defects in IL-1β production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1(-/-) mice lack both caspase-11 and caspase-1. Interestingly, Casp11(-/-) macrophages secreted IL-1β normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1(-/-)Casp11(129mt/129mt) macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1β regardless of stimulus, confirming an essential role for caspase-1 in IL-1β production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.  相似文献   

6.
Caspases function in both apoptosis and inflammatory cytokine processing and thereby have a role in resistance to sepsis. Here we describe a novel role for a caspase in dampening responses to bacterial infection. We show that in mice, gene-targeted deletion of caspase-12 renders animals resistant to peritonitis and septic shock. The resulting survival advantage was conferred by the ability of the caspase-12-deficient mice to clear bacterial infection more efficiently than wild-type littermates. Caspase-12 dampened the production of the pro-inflammatory cytokines interleukin (IL)-1beta, IL-18 (interferon (IFN)-gamma inducing factor) and IFN-gamma, but not tumour-necrosis factor-alpha and IL-6, in response to various bacterial components that stimulate Toll-like receptor and NOD pathways. The IFN-gamma pathway was crucial in mediating survival of septic caspase-12-deficient mice, because administration of neutralizing antibodies to IFN-gamma receptors ablated the survival advantage that otherwise occurred in these animals. Mechanistically, caspase-12 associated with caspase-1 and inhibited its activity. Notably, the protease function of caspase-12 was not necessary for this effect, as the catalytically inactive caspase-12 mutant Cys299Ala also inhibited caspase-1 and IL-1beta production to the same extent as wild-type caspase-12. In this regard, caspase-12 seems to be the cFLIP counterpart for regulating the inflammatory branch of the caspase cascade. In mice, caspase-12 deficiency confers resistance to sepsis and its presence exerts a dominant-negative suppressive effect on caspase-1, resulting in enhanced vulnerability to bacterial infection and septic mortality.  相似文献   

7.
8.
Horng T  Barton GM  Flavell RA  Medzhitov R 《Nature》2002,420(6913):329-333
Mammalian Toll-like receptors (TLRs) function as sensors of infection and induce the activation of innate and adaptive immune responses. Upon recognizing conserved pathogen-associated molecular products, TLRs activate host defence responses through their intracellular signalling domain, the Toll/interleukin-1 receptor (TIR) domain, and the downstream adaptor protein MyD88 (refs 1-3). Although members of the TLR and the interleukin-1 (IL-1) receptor families all signal through MyD88, the signalling pathways induced by individual receptors differ. TIRAP, an adaptor protein in the TLR signalling pathway, has been identified and shown to function downstream of TLR4 (refs 4, 5). Here we report the generation of mice deficient in the Tirap gene. TIRAP-deficient mice respond normally to the TLR5, TLR7 and TLR9 ligands, as well as to IL-1 and IL-18, but have defects in cytokine production and in activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases in response to lipopolysaccharide, a ligand for TLR4. In addition, TIRAP-deficient mice are also impaired in their responses to ligands for TLR2, TLR1 and TLR6. Thus, TIRAP is differentially involved in signalling by members of the TLR family and may account for specificity in the downstream signalling of individual TLRs.  相似文献   

9.
The inflammasome regulates the release of caspase activation-dependent cytokines, including interleukin (IL)-1β, IL-18 and high-mobility group box 1 (HMGB1). By studying HMGB1 release mechanisms, here we identify a role for double-stranded RNA-dependent protein kinase (PKR, also known as EIF2AK2) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminium, rotenone, live Escherichia coli, anthrax lethal toxin, DNA transfection and Salmonella typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1β, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with several inflammasome components, including NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), NLRP1, NLR family CARD domain-containing protein 4 (NLRC4), absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell-free system with recombinant NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC, also known as PYCARD) and pro-caspase-1 reconstitutes inflammasome activity. These results show a crucial role for PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.  相似文献   

10.
11.
Tan Y  Luo ZQ 《Nature》2011,475(7357):506-509
Legionella pneumophila actively modulates host vesicle trafficking pathways to facilitate its intracellular replication with effectors translocated by the Dot/Icm type IV secretion system (T4SS). The SidM/DrrA protein functions by locking the small GTPase Rab1 into an active form by its guanine nucleotide exchange factor (GEF) and AMPylation activity. Here we demonstrate that the L. pneumophila protein SidD preferably deAMPylates Rab1. We found that the deAMPylation activity of SidD could suppress the toxicity of SidM to yeast and is required to release Rab1 from bacterial phagosomes efficiently. A molecular mechanism for the temporal control of Rab1 activity in different phases of L. pneumophila infection is thus established. These observations indicate that AMPylation-mediated signal transduction is a reversible process regulated by specific enzymes.  相似文献   

12.
Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.  相似文献   

13.
Fu ZQ  Guo M  Jeong BR  Tian F  Elthon TE  Cerny RL  Staiger D  Alfano JR 《Nature》2007,447(7142):284-288
  相似文献   

14.
Apoptosis is a form of programmed cell death that is controlled by aspartate-specific cysteine proteases called caspases. In the immune system, apoptosis counters the proliferation of lymphocytes to achieve a homeostatic balance, which allows potent responses to pathogens but avoids autoimmunity. The CD95 (Fas, Apo-1) receptor triggers lymphocyte apoptosis by recruiting Fas-associated death domain (FADD), caspase-8 and caspase-10 proteins into a death-inducing signalling complex. Heterozygous mutations in CD95, CD95 ligand or caspase-10 underlie most cases of autoimmune lymphoproliferative syndrome (ALPS), a human disorder that is characterized by defective lymphocyte apoptosis, lymphadenopathy, splenomegaly and autoimmunity. Mutations in caspase-8 have not been described in ALPS, and homozygous caspase-8 deficiency causes embryonic lethality in mice. Here we describe a human kindred with an inherited genetic deficiency of caspase-8. Homozygous individuals manifest defective lymphocyte apoptosis and homeostasis but, unlike individuals affected with ALPS, also have defects in their activation of T lymphocytes, B lymphocytes and natural killer cells, which leads to immunodeficiency. Thus, caspase-8 deficiency in humans is compatible with normal development and shows that caspase-8 has a postnatal role in immune activation of naive lymphocytes.  相似文献   

15.
Manipulation of host-cell pathways by bacterial pathogens   总被引:3,自引:0,他引:3  
Bhavsar AP  Guttman JA  Finlay BB 《Nature》2007,449(7164):827-834
Bacterial pathogens operate by attacking crucial intracellular pathways in their hosts. These pathogens usually target more than one intracellular pathway and often interact at several points in each of these pathways to commandeer them fully. Although different bacterial pathogens tend to exploit similar pathway components in the host, the way in which they 'hijack' host cells usually differs. Knowledge of how pathogens target distinct cytoskeletal components and immune-cell signalling pathways is rapidly advancing, together with the understanding of bacterial virulence at a molecular level. Studying how these bacterial pathogens subvert host-cell pathways is central to understanding infectious disease.  相似文献   

16.
Integrins are important mammalian receptors involved in normal cellular functions as well as pathogenesis of chronic inflammation and cancer. We propose that integrins are exploited by the gastric pathogen and type-1 carcinogen Helicobacter pylori for injection of the bacterial oncoprotein cytotoxin-associated gene A (CagA) into gastric epithelial cells. Virulent H. pylori express a type-IV secretion pilus that injects CagA into the host cell; CagA then becomes tyrosine-phosphorylated by Src family kinases. However, the identity of the host cell receptor involved in this process has remained unknown. Here we show that the H. pylori CagL protein is a specialized adhesin that is targeted to the pilus surface, where it binds to and activates integrin alpha5beta1 receptor on gastric epithelial cells through an arginine-glycine-aspartate motif. This interaction triggers CagA delivery into target cells as well as activation of focal adhesion kinase and Src. Our findings provide insights into the role of integrins in H.-pylori-induced pathogenesis. CagL may be exploited as a new molecular tool for our further understanding of integrin signalling.  相似文献   

17.
SHARPIN is a ubiquitin-binding and ubiquitin-like-domain-containing protein which, when mutated in mice, results in immune system disorders and multi-organ inflammation. Here we report that SHARPIN functions as a novel component of the linear ubiquitin chain assembly complex (LUBAC) and that the absence of SHARPIN causes dysregulation of NF-κB and apoptotic signalling pathways, explaining the severe phenotypes displayed by chronic proliferative dermatitis (cpdm) in SHARPIN-deficient mice. Upon binding to the LUBAC subunit HOIP (also known as RNF31), SHARPIN stimulates the formation of linear ubiquitin chains in vitro and in vivo. Coexpression of SHARPIN and HOIP promotes linear ubiquitination of NEMO (also known as IKBKG), an adaptor of the IκB kinases (IKKs) and subsequent activation of NF-κB signalling, whereas SHARPIN deficiency in mice causes an impaired activation of the IKK complex and NF-κB in B cells, macrophages and mouse embryonic fibroblasts (MEFs). This effect is further enhanced upon concurrent downregulation of HOIL-1L (also known as RBCK1), another HOIP-binding component of LUBAC. In addition, SHARPIN deficiency leads to rapid cell death upon tumour-necrosis factor α (TNF-α) stimulation via FADD- and caspase-8-dependent pathways. SHARPIN thus activates NF-κB and inhibits apoptosis via distinct pathways in vivo.  相似文献   

18.
Members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family contribute to immune responses through activation of nuclear factor-κB (NF-κB), type I interferon and inflammasome signalling. Mice lacking the NLR family member NLRP6 were recently shown to be susceptible to colitis and colorectal tumorigenesis, but the role of NLRP6 in microbial infections and the nature of the inflammatory signalling pathways regulated by NLRP6 remain unclear. Here we show that Nlrp6-deficient mice are highly resistant to infection with the bacterial pathogens Listeria monocytogenes, Salmonella typhimurium and Escherichia coli. Infected Nlrp6-deficient mice had increased numbers of monocytes and neutrophils in circulation, and NLRP6 signalling in both haematopoietic and radioresistant cells contributed to increased susceptibility. Nlrp6 deficiency enhanced activation of mitogen-activated protein kinase (MAPK) and the canonical NF-κB pathway after Toll-like receptor ligation, but not cytosolic NOD1/2 ligation, in vitro. Consequently, infected Nlrp6-deficient cells produced increased levels of NF-κB- and MAPK-dependent cytokines and chemokines. Thus, our results reveal NLRP6 as a negative regulator of inflammatory signalling, and demonstrate a role for this NLR in impeding clearance of both Gram-positive and -negative bacterial pathogens.  相似文献   

19.
Assembly of multi-component supramolecular machines is fundamental to biology, yet in most cases, assembly pathways and their control are poorly understood. An example is the type III secretion machine, which mediates the transfer of bacterial virulence proteins into host cells. A central component of this nanomachine is the needle complex or injectisome, an organelle associated with the bacterial envelope that is composed of a multi-ring base, an inner rod, and a protruding needle. Assembly of this organelle proceeds in sequential steps that require the reprogramming of the secretion machine. Here we provide evidence that, in Salmonella typhimurium, completion of the assembly of the inner rod determines the size of the needle substructure. Assembly of the inner rod, which is regulated by the InvJ protein, triggers conformational changes on the cytoplasmic side of the injectisome, reprogramming the secretion apparatus to stop secretion of the needle protein.  相似文献   

20.
Stimulation of the phosphatidylinositol pathway can induce T-cell activation   总被引:11,自引:0,他引:11  
D M Desai  M E Newton  T Kadlecek  A Weiss 《Nature》1990,348(6296):66-69
The T-cell antigen receptor (TCR) regulates two signal transduction pathways: the phosphatidylinositol (PtdIns) and tyrosine kinase pathways. Stimulation of T cells with antigen or anti-TCR monoclonal antibodies induces an increase in inositol phosphates and diacylglycerol, the second messengers responsible for the mobilization of cytoplasmic free calcium and activation of protein kinase C-4. The TCR also activates a tyrosine kinase that is not intrinsic to the TCR. The relationship between these two signal transduction pathways and their contribution to later T-cell responses is unclear. Studies using variants of a murine hybridoma suggested that the PtdIns pathway might not be necessary for or be involved in regulating interleukin-2 (IL-2) production. To address the relationship between later T-cell responses and the early biochemical signals, we investigated the ability of a heterologous receptor with defined signal transduction function to induce T-cell activation. The human muscarinic subtype-1 receptor (HM1), which elicits PtdIns metabolism in neuronal cells through a G protein-coupled mechanism, also functionally activates this pathway when expressed in the T-cell line Jurkat-derived host, J-HM1-2.2 (ref.8). We show here that stimulation of HM1 alone induced IL-2 production and IL-2 receptor alpha chain expression. HM1 does not induce the tyrosine kinase pathway, suggesting that this pathway does not directly influence later T cell-activation responses. Instead, our studies indicate that activation of the PtdIns pathway is probably sufficient to induce later T-cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号