首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为了减小组合效应的不利影响,提出了采用单轴对称钢梁截面的新型弱轴连接组合节点,该单轴对称钢梁截面形式为上窄下宽且仅梁下翼缘削弱.运用有限元软件ABAQUS对新型弱轴连接组合节点展开循环荷载作用下的参数分析,以获得各参数对其滞回性能的影响.结果表明:层间位移角为±0. 04 rad时,各模型的抗弯承载力均满足AISC 341-10规范对特殊抗弯框架的要求;在普通组合节点中,尽管对梁上下翼缘进行了削弱处理,梁下翼缘焊缝仍然有极大的脆断风险;采用单轴对称钢梁截面可以减小组合效应的不利影响;建议单轴对称钢梁截面中梁下翼缘削弱区域起始位置距蒙皮板的距离为0. 75~0. 90倍梁下翼缘宽度,削弱区段长度为0. 65~0. 90倍梁截面高度,削弱深度不大于0. 20倍梁下翼缘宽度.  相似文献   

2.
为研究T形件螺栓连接卷边钢板组合截面PEC柱-钢梁组合框架结构的抗震机理,设计制作了一榀底部两层单跨组合框架1/2缩尺试件并进行水平低周往复荷载试验.基于试验现象和测试数据,从试件结构的滞回特性、水平抗侧刚度退化、节点性能、耗能能力与抗震延性、塑性机构发展进程与延性破坏模式等性能进行分析.研究结果显示:T形件螺栓连接增大了梁柱节点刚度,改善了结构的整体性,试件的初始抗侧刚度较大、极限承载力较高;T形件螺栓连接使得梁端塑性铰形成位置远离节点区,试件滞回曲线较为饱满,试验结束对应承载力未出现明显降低,且对应整体侧移角、位移延性系数和等效黏滞阻尼系数表明试件具有良好的抗倒塌能力、抗震延性与耗能能力;T形件螺栓连接PEC柱-钢梁组合框架试件塑性破坏机构发展进程为T形件端部梁截面和PEC柱脚相继形成塑性铰,实现了框架结构的理想延性耗能模式.  相似文献   

3.
提出了一种新型钢框架梁-柱削弱节点形式——波纹腹板削弱型节点.这种新型梁-柱节点是将靠近柱翼缘的工字梁腹板局部改成具有折叠效应的波纹腹板来削弱工字梁的抗弯能力,将失效部位从梁-柱节点的焊接部位转移到工字梁波纹腹板所在截面处,达到塑性铰外移的目的.而且波纹腹板还可以阻止受压翼缘在屈服之后发生局部失稳.本文通过低周反复试验考察了波纹腹板削弱型梁-柱节点的抗震性能.试验表明,波纹腹板削弱型梁柱节点的强度破坏出现在波纹腹板处的截面,梁柱连接处的焊缝没有破坏,实现了塑性铰外移的目的;而且由于波纹腹板的支撑作用,翼缘在屈服后没有严重局部失稳.另外,通过和传统梁柱节点对比发现,波纹腹板新型梁柱节点在出现塑性铰后没有出现明显的强度退化现象,波纹腹板削弱型梁柱节点的滞回曲线稳定饱满,具有更好的耗能性能.综上所述,该波纹腹板削弱型梁柱节点起到将塑性铰从梁柱根部外移、护梁柱焊缝的作用,具有良好的延性和滞回耗能性能,可以替代传统梁柱用于钢框架结构.  相似文献   

4.
为研究薄钢板PEC柱-钢梁组合框架的抗震性能,针对1榀2层单跨对穿螺栓端板连接薄钢板组合截面PEC-削弱截面钢梁组合框架结构试验试件,采用有限元软件ABAQUS对其进行水平循环往复荷载下的数值模拟.基于模拟结果,对试件结构滞回特性、水平抗侧刚度、耗能延性和破坏模式等进行分析.研究表明:试件结构具有较高承载力和较大的抗侧刚度;试件层间变形为剪切型变形模式;试件耗能能力主要由梁端削弱截面屈服和PEC柱脚钢构架屈服与混凝土压溃提供,端板对穿螺栓连接及梁端削弱截面实现了梁端塑性铰区远离节点区;试件最终破坏模式为梁端削弱截面和PEC柱脚处形成塑性铰的塑性破坏机构.该结构体系具有良好的抗震延性.  相似文献   

5.
设计了一种环梁式圆钢管约束H型钢混凝土柱-钢梁节点,并建立了该试件的全尺寸三维有限元分析模型,计算得到了此类节点试件的滞回曲线、骨架曲线及破坏模式,经与试验结果进行对比,两者吻合良好.在此基础上,对试件进行有限元变参数分析,考察了轴压比、混凝土强度、梁柱线刚度等对试件抗震受力性能的影响,同时提出了一种改进型梁端削弱翼缘的节点形式.结果表明:随轴压比增大,试件的耗能及延性性能明显下降;混凝土强度的变化对试件滞回性能影响不大;当保持柱截面不变,仅变换钢梁尺寸时,节点的承载力、延性及抗震耗能性能均随梁-柱线刚度比的增大而显著增大;而当保持钢梁截面不变,仅改变柱内型钢含钢率时,节点抗震受力性能随梁-柱线刚度比的变化并不明显;改进的梁端翼缘削弱形式的试件可在不明显降低其承载力及耗能性能的情况下,将塑性铰外移至距节点区较远的地方,从而更好地保护节点区.上述研究结论可为此类新型节点的应用提供理论基础.  相似文献   

6.
为避免钢结构梁柱节点在地震作用下出现脆性破坏,提出一种新的梁端削弱型结构形式来实现塑性铰的外移。采用ABAQUS有限元分析软件对节点进行滞回耗能能力的分析,同时对不同削弱深度的截面内力进行对比分析,并使用Perform-3D软件的静力推覆工况对新型塑性铰框架和普通框架的承载能力进行对比分析。研究结果表明,首先达到屈服强度的截面是上、下耗能板削弱最深位置的横截面;随着耗能板削弱深度的增加,耗能板削弱最深处横截面就会越容易屈服,且能够有效地降低梁柱节点焊缝截面的作用反力;新型塑性铰的耗能能力主要与耗能板的削弱深度有关,在满足承载力要求的情况下随着削弱深度的增加,塑性铰的耗能能力不断增加;由静力推覆分析可知,拥有新型塑性铰框架的整体承载能力比普通框架的整体承载能力低,所以过度的削弱耗能板深度会导致框架不能满足结构承载力的要求。适当的削弱深度会增加节点延性,提高节点的抗震能力,实现塑性铰外移的目标,起到保护梁柱节点的作用。研究结果可为削弱型梁柱节点的研究提供参考。  相似文献   

7.
研究钢框架梁柱节点负载下焊接盖板加固之后的力学性能,为工程设计提供参考,为相关规范修订提供理论依据.通过对4个节点试件的试验研究,考虑梁端不同初始负载等级影响,重点分析了梁柱节点的破坏形式、承载力、延性、耗能能力、刚度退化等抗震性能,并且对比分析了加固之前的文献.结果表明:负载下焊接盖板加固梁柱节点能够有效地提高其承载力和延性耗能能力,并成功地将塑性铰外移到距盖板末端约1/4梁高截面位置,保护了梁柱翼缘焊缝,达到了加固的目的.  相似文献   

8.
为研究新型钢板组合PEC柱-钢梁节点连接的抗震性能,以采用预拉对穿螺栓的新型PEC柱-钢梁T形件焊接连接中节点试验试件为研究对象,考虑轴压力、PEC柱截面形式与钢板组合截面布置方式等设计参数,利用有限元软件ABAQUS建立4个中节点有限元模型并对其滞回性能进行模拟.研究结果显示:柱轴压力提高了节点连接的初始抗弯刚度,而二阶效应降低了其抗弯能力;采取钢结构翼缘卷边增强了混凝土的约束作用,更好地满足"强柱弱梁"的抗震要求;钢板组合截面布置是决定梁柱连接刚度合理匹配的关键;预拉对穿螺栓表现出部分自复位功效,且较好地实现了混凝土斜压带传力模式,相应降低了节点域腹板的抗剪要求;所有试件破坏模式均因T形件的加强使得梁上塑性铰出现位置向T形件腹板尾部附近梁截面转移,且所有试件达到破坏时节点转角均超过0.02弧度,表明该节点连接能较好地满足抗震对节点转动能力的需求.  相似文献   

9.
为了研究扩翼形状和尺寸对钢框架扩翼型节点抗震性能的影响,建立了1个普通型和6个具有不同形状和尺寸的直接扩翼型钢框架节点有限元分析模型,分析了低周往复荷载条件下,不同扩翼型式节点的塑性铰形成与发展、滞回性能、骨架曲线、刚度退化、延性性能和耗能能力等抗震性能,并通过普通型节点试验证实了有限元数值模拟的可靠性.研究结果表明:钢框架节点梁端翼缘扩翼长度和扩翼宽度越大,节点可达到的极限承载能力越高,但节点屈服后其耗能能力下降越快,可达到的极限位移值较小;凹弧式扩翼型节点具有更好的耗能能力,建议在实际工程运用中优先采用.  相似文献   

10.
为了研究新型卷边PEC柱—钢梁组合框架的抗震机理,本文针对1榀两层单跨设置预拉对穿螺栓短端板连接新型卷边PEC-钢梁组合框架结构试验试件,采用商业有限元软件ABAQUS对其进行水平循环往复荷载下的抗震性能数值模拟。基于模拟结果,对试件结构滞回性能、水平抗侧刚度、耗能能力、节点连接力学性能、层间传力机理和破坏机构等方面抗震性能进行分析。研究表明:试件结构具有较高承载力和较大的抗侧刚度,且加载初期两层初始抗侧刚度差异明显,随着加载损伤进程的发展其差异不断减小;试件结构水平力作用引起的倾覆弯矩受压侧下层PEC柱承担层间水平总剪力58%,而上层PEC柱平均分担层间剪力,且试件层间侧移变形表现为剪切型变形模式;试件耗能能力由梁端端板附近截面屈服和PEC柱脚钢构架屈服与混凝土压溃提供,且上下层耗能分布基本均匀;PEC柱与钢梁端板预拉对穿螺栓连接具有较强的转动能力,且端板预拉对穿螺栓形成了节点区混凝土斜压带传力模式和提供了节点连接部分自复位功效;试件最终破坏模式为梁端附近截面充分屈服和PEC柱脚部位钢构架屈服与混凝土压溃形成塑性铰的塑性破坏机构,对上下层层间侧移和节点连接转角分别为0.051 rad、0.042 rad和0.045 5 rad,均超过大震对应层间侧移限值1/30的要求,即该试件结构具有良好的抗震延性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号