首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
锂硫(Li-S)电池因高理论能量密度在众多新型电池中受到广泛关注,但存在硫正极导电性差、多硫化物的穿梭等问题,制约其商业应用。针对上述问题,本次试验制备苘麻基生物碳(AC),通过熔融扩散法与升华硫(S)复合形成碳/硫复合材料(AC@S),并使用碳涂层法在正极材料表面涂覆多壁碳纳米管(MWCNTS)作为Li-S电池正极片与隔膜之间的夹层,进一步抑制多硫化物的溶解和扩散,阻止穿梭效应,减小活性物质的损失,提高Li-S电池的容量和循环性能。AC@S+MWCNTs电池首次放电容量为1 242.8 mAh·g-1,循环150次后仍保持982.4 mAh·g-1,相同条件下比AC@S高出275.0 mAh·g-1。将MWCNTS涂层与正极材料结合设计工艺简单,成本低,且可提高材料导电性、抑制多硫化物的穿梭效应,表现出良好的循环性能和库伦效率,是一种解决Li-S电池穿梭效应的有效途径。  相似文献   

2.
单质硫具有高理论比容量、丰富的储量、低成本和环境友好的特点,由硫正极和金属锂负极组成的锂硫电池能量密度可以达到1 000 Wh/kg以上.然而,硫的绝缘性、穿梭效应和充放电过程中的体积剧变等限制了锂硫电池的应用.要同时解决这3个问题,合理的硫载体材料设计是关键.结合近年来的相关文献报道,综述锂硫电池硫载体材料及其相应的电化学性能,展望硫载体材料的发展趋势.  相似文献   

3.
锂硫电池以其能量密度高和原材料丰富等优点而备受关注。本文采用第一性原理方法研究了Ni掺杂锂硫电池正极材料Li_2S的锂空位形成能。结果表明:Ni引起费米能级处的间隙态通过调制电子以有利于Li的嵌入/脱出。  相似文献   

4.
作为储能器件的重要一员,锂硫电池具有理论能量密度高、安全性好、成本低等优点,已成为目前最具前景的电源体系之一.但锂硫电池充放电过程中多硫化物的穿梭效应使其在长期循环过程中的性能衰减. MXene基材料具有优异的导电性和高比表面积,对多硫化锂具有强化学吸附和催化转化能力,能够有效避免多硫化物的穿梭效应,从而提高锂硫电池的循环稳定性和倍率性能.本工作简述了MXene基材料在锂硫电池中的应用优势,总结了MXene基复合材料在锂硫电池正极和隔膜中的应用研究现状,归纳了MXene基材料对锂硫电池穿梭效应的影响,最后,展望了MXene基材料在锂硫电池领域的未来研究方向.  相似文献   

5.
锂硫电池因其高比容量、高能量密度和低成本等特点已被视为超越锂离子电池的下一代可充电电池。由于反应产物可溶性多硫化物的穿梭效应和循环中硫电极的体积膨胀导致电池的循环寿命较差。为了解决锂硫电池中存在的问题,研究人员开发了多种纳米结构的金属材料。总结了利用钛元素和钛基化合物(包括钛基氧化物、钛基硫化物和钛基氮化物)与硫的反应形成牢固化学键,通过金属基复合材料的结构设计来提升锂硫电池的综合性能。  相似文献   

6.
利用化学刻蚀后得到的MXene (MX)片层具有大量阴离子官能团的特点,采用喷雾干燥技术,设计并合成了钒离子改性MXene(MX-VN)材料用于锂硫电池正极。MXene的优异导电性可以提高硫正极整体的导电性,同时原位构建的MX-VN界面可以提高对多硫化物的吸附效果和催化能力,提高硫的利用率。实验结果表明,采用MX-VN/S为正极的锂硫电池在0.1 C下的放电容量高达1438 mAh/g,且在0.5 C下循环200次以后容量保持率高达77.5%,电池性能明显提升。  相似文献   

7.
面对世界范围内日趋严重的能源危机、气候、环保等问题,能源低碳转型已经成为大势所趋。锂离子电池是“双碳”愿景下电化学储能领域的重要方向,在新能源汽车和智能电子设备领域都发挥了不可忽视的作用。但科技的发展和日益增长的社会生活生产需求对现有锂离子电池的能量密度提出了更高的要求。富锂正极材料具有成本低、工作电压高、比容量高(>250 mA·h·g-1)等优点,在下一代锂离子电池正极中极具潜力,但初始库仑效率(ICE)低、容量衰减和电压衰减等问题仍制约着富锂正极材料的商业化进程。本文综述了近年来国内外针对富锂正极材料结构、反应机理和改性方法等方面的研究进展,总结富锂正极材料的研究热点与挑战,并对未来发展方向提出了展望。  相似文献   

8.
利用原位水解和熔融扩散技术制备钛酸锂/硫(LTO/S)复合材料,并以该复合材料为正极、金属锂为负极,结合PEO基聚合物固体电解质组装全固态锂电池。研究结果表明,电池充放电过程中钛酸锂和硫作为正极活性物质均提供了高容量,电池循环稳定性也得到了显著提高;当复合正极中钛酸锂与硫质量比为1:3、活性物质质量分数为80%时,电池的容量发挥和循环稳定性同时达到最佳;在60℃和0.2C测试条件下,循环100圈后电池比容量保持在801 mA·h/g,库仑效率达到99%。  相似文献   

9.
锂硫电池被认为是最有前途的高能量密度储能系统,但充电过程中多聚硫化物的溶解限制了活性材料的利用率和循环稳定性,影响了锂硫电池的实际应用.通过电化学聚合电解质中所含的3,4-乙烯二氧噻吩(EDOT)单体,使其在正极碳硫复合物表面原位形成聚乙烯二氧噻吩包覆层.在电池内部原位形成包覆层,可以增加电解液与活性物质的浸润性,提高Li+电导率,从而增加活性物质利用率.通过极性-极性键吸附多硫化物,抑制穿梭效应,从而提高循环稳定性.实验结果显示,添加50 mmol/L EDOT的锂硫电池的初始放电比容量为1155 mA·h/g,200次循环比容量仍高达770 mA·h/g,优于未添加EDOT的锂硫电池.  相似文献   

10.
采用Hummers法和熔融扩散法结合的方法制备了氧化石墨烯@硫(GO@S)复合正极材料,研究了此复合正极对锂硫电池电化学性能的影响.测试结果表明,GO@S复合正极大幅度提高了电池的比容量、有效改善了电池的倍率性能和循环稳定性.在0.1 C倍率下,初始放电容量高达1 044 mA·h/g;0.5 C倍率下经过100次的充放电循环后,库伦效率为96%,容量保持率为78.5%.  相似文献   

11.
锂硫电池理论比容量高、成本低、环境友好,但硫正极仍面临导电性差、容量衰减快、体积膨胀等问题。采用生物质废弃物玉米芯作为碳源,KOH为活化剂,通过不同工艺制备了三种多孔碳材料。利用XRD、SEM、BET等对多孔碳产品的物相形貌等进行表征后发现,采用一次活化工艺所制备的多孔碳材料具有大量相互贯通的孔道结构,故具有高的比表面积(1 578.64 m~2/g)与较大的孔容(0.93 cm~3/g)。覆硫后用于锂硫电池正极,可作为三维导电骨架显著提高硫正极的导电率,并对单质硫表现出较高的吸附性能。电化学测试表明改性正极材料首次放电比容量为1 050.7 mAh/g,50周循环后容量保持率为50.4%。综合对比表明,一次活化工艺为利用此类生物质废弃物制备多孔碳材料提供了优化方案。  相似文献   

12.
正锁阳(Cynomorium songaricum Rupr.)为中国锁阳科全寄生植物,具有补肾阳、益精血、润肠通便的作用,主治肾阳不足、精血亏虚、腰膝酸软、阳痿滑精、肠燥便秘等~([1]).锁阳的寄主有白刺属(Nitraria L.)~([2])、红砂属(Reaumuria L.)~([2])、霸王(Sarcozygium xanthoxylon Bunge)~([3])及多裂骆驼蓬(Peganum multisectum(Maxim.)Bobr)等~([4]).甘肃省河西地区常见的白刺属锁阳寄主植物有小果白刺  相似文献   

13.
通过在聚乙烯(PE)隔膜上引入三氧化钼(MoO3)和溴化锂(LiBr)涂层制备LiBr/MoO3/PE多功能复合隔膜,采用X射线衍射和扫描电子显微镜对膜的结构和形貌进行表征,并通过循环伏安、电化学阻抗和充放电性能测试等方法研究涂覆修饰层后的LiBr/MoO3/PE隔膜对Li金属负极稳定性和锂硫(Li-S)电池性能的影响.结果表明:LiBr提高了多硫化锂(LiPSs)的溶解度,MoO3层对LiPSs具有化学吸附作用,可提高活性物质S的利用率,并抑制Li-S电池的穿梭效应;以LiBr/MoO3/PE为隔膜的Li-Li对称电池在0.6 mA/cm2的电流密度和1 (mA·h)/cm2的容量下稳定循环时间为1 600 h, Li-S电池在0.2 C下的初始放电比容量可达1 229.2 (mA·h)/g, 500次充放电循环后的比容量为628 (mA·h)/g.  相似文献   

14.
设计制备了一种钴嵌入式叶片状氮掺杂碳(Co-N-C)材料改性隔膜用于锂硫电池,借助高分散单质钴提供的活性位点实现对正极侧中间产物多硫化物的化学锚定,抑制其溶解导致的穿梭效应;利用氮掺杂碳材料的微纳结构加快离子传输速率,提高电化学反应动力学,使改性隔膜实现吸附-催化协同作用。实验结果表明,采用此改性隔膜组装的锂硫电池,首圈比容量高达1408 mAh/g,且在1 C倍率下稳定循环400圈,衰减率仅为每圈0.05%,电池性能明显提升。  相似文献   

15.
采用高导电性碳材料和商业活性炭分别作为硫的载体,与单质硫混合后进行热处理制得SP/S和CAC/S硫碳复合材料,利用热重测试、循环伏安、交流阻抗和恒流充放电测试等分析方法,研究了正极中电极材料厚度、硫碳复合比例对电池电化学性能的影响.结果表明:适当增加电极材料厚度可以有效地改善Super-P材料电极综合电化学性能;通过改变硫碳复合比例,提高硫含量则对活性炭材料锂硫电池电极的性能提升有着显著的效果.其中,含硫量为63.60%的CAC/S正极材料首次放电比容量达到908.8 m Ah/g,活性物质利用率为54.2%,100圈循环后放电容量为594.1 m Ah/g,容量保持率达到65.4%.  相似文献   

16.
在二次电池中,锂硫电池作为以硫为正极活性物质的电池形态,它具有原料环保且相对于其他传统材料更高比容量的特点。针对锂硫电池硫导电性差、膨胀率较大且充放电过程形成的多硫化锂易溶于电解液形成"穿梭效应"的不足,设计了一种以锂盐改性累托石为硫的宿主,碳硫复合的正极材料来改善锂硫电池的电化学性能。经测试,锂盐改性可以较大程度地疏通累托石的层间和孔道结构,增大比表面积和孔容,从而扩大硫在孔道中的负载空间,同时锂离子大量富集于材料中能有效提高充放电中离子和电子的传输。该改性正极复合材料在0. 1 C倍率下首圈循环充放电比容量为877 mAh/g,60圈后比容量衰减为653 mAh/g,容量保有率为74. 5%,说明材料中的成分能有效吸附多硫化物、抑制穿梭效应,使材料具有较好的循环稳定性。在电流密度0. 1、0. 2、0. 5、1 C下平均比容量分别为850、750、600和500 mAh/g左右,表现出良好的倍率性能。其电荷转移阻抗为63Ω,有利于电子电荷的传导。  相似文献   

17.
<正>柯萨奇A组6型病毒(coxsackievirus A6,CVA6)近年来已成为导致手足口病(HFMD)的主要病原体~([1]).HFMD在儿童中广泛流行,发病数和死亡病例数均居我国丙类传染病首位,亟需发展有效的预防和治疗方法.厦门大学公共卫生学院夏宁邵教授课题组前期已开展了CVA6的动物感染模型与病毒基因组研究~([2-3]).然而,目前对于病毒颗粒结构和优势中和表位仍缺乏了解,制约了相关研究  相似文献   

18.
锂离子电池在生产和生活中已经得到广泛应用,但也面临更高的使用要求和技术挑战,如能量密度较低等问题.凭借高理论能量密度和低成本等优势,锂硫电池被寄予厚望.但是,容量稳定性和安全性等问题成为锂硫电池技术发展的主要瓶颈.上述问题均与膜材料的结构和性能密切相关.在锂硫电池中,隔膜除发挥基本功能外,还需解决界面、硫穿梭及锂枝晶等问题,开发功能隔膜是解决电池上述问题的有效途径.基于涂层材料的特殊结构和理化性能对隔膜或隔膜/电极界面进行修饰是当前广泛选用的方法.本文针对锂硫电池的3大问题与隔膜材料的关系,总结了锂硫电池隔膜的研究进展,并对其未来发展方向提出展望.  相似文献   

19.
由于具有高能量密度和环境友好性,锂硫电池成为备受关注的下一代电化学储能系统,然而硫和硫化锂的低电导率和多硫化锂的穿梭效应严重影响锂硫电池的实际比容量和循环性能.本研究制备出了具有高氮含量(原子数分数20.08%)和高比表面积(1000m~2·g~(-1))的a-MEGO@g-C_3N_4复合材料,并将其用作隔膜修饰层.在0.1C(1C=1675mA·g~(-1))的充放电速度下,采用修饰隔膜的电池首次放电容量达1244mAh·g~(-1);在0.5C下循环800次,衰减率为0.062%,两项指标明显优于对比电池.实验研究发现,a-MEGO@g-C_3N_4隔膜修饰后电池性能的提高来源于两方面:(1)高比表面积的a-MEGO@g-C_3N_4通过物理吸附固定多硫化物;(2)g-C_3N_4与多硫化锂通过形成C-S键与Li-N键抑制穿梭效应,并对溶解的活性物质实现再利用.本研究为以g-C_3N_4为基础的高氮碳材料在锂硫电池中的应用提供了可能.  相似文献   

20.
锂硫电池具有能量密度高、成本低、环境污染少等优势,是过去十年里最引人关注的储能系统之一,被认为是极有前途的新型二次电池。近年来,随着电动汽车的飞速发展,对高性能、长寿命电池的研究提出了极高的要求,锂硫电池的天然优越性能够满足该要求,并且展示了广泛的应用前景。然而由于电池运行过程中仍然存在着电极-电解质界面化学难以控制的问题,如何提高电池的性能和寿命引起了研究人员的广泛关注。随着各种类型高效正、负极材料的提出,锂硫电池的未来具有很好的发展前景。文章综述和讨论了最近的研究成果,从正极异质结构催化剂、单原子催化剂和负极保护材料这3个方面全面总结了用于高活性锂硫电池的催化剂最新进展。其中:异质结构催化剂不仅可以将两种功能互补或相互增强的材料结合在一起,而且在界面处具有内部电场,可以增强锂电池中多硫化锂转化反应的动力学;单原子催化剂由于其在结构-活性关系和反应机理中的原子级适用性及具有原子精度的结构可调性为解决锂硫电池多硫化锂的穿梭等问题提供新的策略;负极材料不仅可以抑制多硫化锂的穿梭,而且可以稳定金属锂的表面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号