首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Williams-Beuren syndrome (WBS) is most often caused by hemizygous deletion of a 1.5-Mb interval encompassing at least 17 genes at 7q11.23 (refs. 1,2). As with many other haploinsufficiency diseases, the mechanism underlying the WBS deletion is thought to be unequal meiotic recombination, probably mediated by the highly homologous DNA that flanks the commonly deleted region. Here, we report the use of interphase fluorescence in situ hybridization (FISH) and pulsed-field gel electrophoresis (PFGE) to identify a genomic polymorphism in families with WBS, consisting of an inversion of the WBS region. We have observed that the inversion is hemizygous in 3 of 11 (27%) atypical affected individuals who show a subset of the WBS phenotypic spectrum but do not carry the typical WBS microdeletion. Two of these individuals also have a parent who carries the inversion. In addition, in 4 of 12 (33%) families with a proband carrying the WBS deletion, we observed the inversion exclusively in the parent transmitting the disease-related chromosome. These results suggest the presence of a newly identified genomic variant within the population that may be associated with the disease. It may result in predisposition to primarily WBS-causing microdeletions, but may also cause translocations and inversions.  相似文献   

2.
Identification of a cluster of X-linked imprinted genes in mice   总被引:5,自引:0,他引:5  
  相似文献   

3.
Many quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, but few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. Transgenic mice have been successfully used to analyse well-characterized genes suspected of contributing to quantitative traits. Although this approach is powerful for examining one gene at a time, it can be impractical for surveying the large genomic intervals containing many genes that are typically associated with QTLs. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q3 (refs 6,7), we characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a 1-Mb interval of chromosome 5q31 containing 6 cytokine genes and 17 partially characterized genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180-kb region containing 5 genes, including those encoding human interleukin 4 (IL4) and interleukin 13 (IL13 ), which induce IgE class switching in B cells. Further analysis of these mice and mice transgenic for mouse Il4 and Il13 demonstrated that moderate changes in Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled us to identify genes that influence the QTL phenotype in vivo.  相似文献   

4.
Random monoallelic expression and asynchronous replication define an unusual class of autosomal mammalian genes. We show that every cell has randomly chosen either the maternal or paternal copy of each given autosome pair, such that alleles of these genes scattered across the chosen chromosome replicate earlier than the alleles on the homologous chromosome. Thus, chromosome-pair non-equivalence, rather than being limited to X-chromosome inactivation, is a fundamental property of mouse chromosomes.  相似文献   

5.
Human chromosome 14q32.2 carries a cluster of imprinted genes including paternally expressed genes (PEGs) such as DLK1 and RTL1 and maternally expressed genes (MEGs) such as MEG3 (also known as GTL2), RTL1as (RTL1 antisense) and MEG8 (refs. 1,2), together with the intergenic differentially methylated region (IG-DMR) and the MEG3-DMR. Consistent with this, paternal and maternal uniparental disomy for chromosome 14 (upd(14)pat and upd(14)mat) cause distinct phenotypes. We studied eight individuals (cases 1-8) with a upd(14)pat-like phenotype and three individuals (cases 9-11) with a upd(14)mat-like phenotype in the absence of upd(14) and identified various deletions and epimutations affecting the imprinted region. The results, together with recent mouse data, imply that the IG-DMR has an important cis-acting regulatory function on the maternally inherited chromosome and that excessive RTL1 expression and decreased DLK1 and RTL1 expression are relevant to upd(14)pat-like and upd(14)mat-like phenotypes, respectively.  相似文献   

6.
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2(+/-) mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1(C1039G/+)) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β-mediated vasculopathies.  相似文献   

7.
X-linked dominant disorders that are exclusively lethal prenatally in hemizygous males have been described in human and mouse. None of the genes responsible has been isolated in either species. The bare patches (Bpa) and striated (Str) mouse mutations were originally identified in female offspring of X-irradiated males. Subsequently, additional independent alleles were described. We have previously mapped these X-linked dominant, male-lethal mutations to an overlapping region of 600 kb that is homologous to human Xq28 (ref. 4) and identified several candidate genes in this interval. Here we report mutations in one of these genes, Nsdhl, encoding an NAD(P)H steroid dehydrogenase-like protein, in two independent Bpa and three independent Str alleles. Quantitative analysis of sterols from tissues of affected Bpa mice support a role for Nsdhl in cholesterol biosynthesis. Our results demonstrate that Bpa and Str are allelic mutations and identify the first mammalian locus associated with an X-linked dominant, male-lethal phenotype. They also expand the spectrum of phenotypes associated with abnormalities of cholesterol metabolism.  相似文献   

8.
A central challenge in genetics is to predict phenotypic variation from individual genome sequences. Here we construct and evaluate phenotypic predictions for 19 strains of Saccharomyces cerevisiae. We use conservation-based methods to predict the impact of protein-coding variation within genes on protein function. We then rank strains using a prediction score that measures the total sum of function-altering changes in different sets of genes reported to influence over 100 phenotypes in genome-wide loss-of-function screens. We evaluate our predictions by comparing them with the observed growth rate and efficiency of 15 strains tested across 20 conditions in quantitative experiments. The median predictive performance, as measured by ROC AUC, was 0.76, and predictions were more accurate when the genes reported to influence a trait were highly connected in a functional gene network.  相似文献   

9.
Sex chromosomes are subject to sex-specific selective evolutionary forces. One model predicts that genes with sex-biased expression should be enriched on the X chromosome. In agreement with Rice's hypothesis, spermatogonial genes are over-represented on the X chromosome of mice and sex- and reproduction-related genes are over-represented on the human X chromosome. Male-biased genes are under-represented on the X chromosome in worms and flies, however. Here we show that mouse spermatogenesis genes are relatively under-represented on the X chromosome and female-biased genes are enriched on it. We used Spo11(-/-) mice blocked in spermatogenesis early in meiosis to evaluate the temporal pattern of gene expression in sperm development. Genes expressed before the Spo11 block are enriched on the X chromosome, whereas those expressed later in spermatogenesis are depleted. Inactivation of the X chromosome in male meiosis may be a universal driving force for X-chromosome demasculinization.  相似文献   

10.
Williams syndrome is a neurodevelopmental disorder caused by the hemizygous deletion of 1.6 Mb on human chromosome 7q11.23. This region comprises the gene CYLN2, encoding CLIP-115, a microtubule-binding protein of 115 kD. Using a gene-targeting approach, we provide evidence that mice with haploinsufficiency for Cyln2 have features reminiscent of Williams syndrome, including mild growth deficiency, brain abnormalities, hippocampal dysfunction and particular deficits in motor coordination. Absence of CLIP-115 also leads to increased levels of CLIP-170 (a closely related cytoplasmic linker protein) and dynactin at the tips of growing microtubules. This protein redistribution may affect dynein motor regulation and, together with the loss of CLIP-115-specific functions, underlie neurological alterations in Williams syndrome.  相似文献   

11.
Most human sequence variation is in the form of single-nucleotide polymorphisms (SNPs). It has been proposed that coding-region SNPs (cSNPs) be used for direct association studies to determine the genetic basis of complex traits. The success of such studies depends on the frequency of disease-associated alleles, and their distribution in different ethnic populations. If disease-associated alleles are frequent in most populations, then direct genotyping of candidate variants could show robust associations in manageable study samples. This approach is less feasible if the genetic risk from a given candidate gene is due to many infrequent alleles. Previous studies of several genes demonstrated that most variants are relatively infrequent (<0.05). These surveys genotyped small samples (n<75) and thus had limited ability to identify rare alleles. Here we evaluate the prevalence and distribution of such rare alleles by genotyping an ethnically diverse reference sample that is more than six times larger than those used in previous studies (n=450). We screened for variants in the complete coding sequence and intron-exon junctions of two candidate genes for neuropsychiatric phenotypes: SLC6A4, encoding the serotonin transporter; and SLC18A2, encoding the vesicular monoamine transporter. Both genes have unique roles in neuronal transmission, and variants in either gene might be associated with neurobehavioral phenotypes.  相似文献   

12.
The nature of mendelian inheritance assumes that all tissues in which a phenotype of interest is expressed have a uniform diploid karyotype, which is often not the case in cancer cells. Owing to nonrandom gains of chromosomes, trisomies are present in many cases of leukemia and other malignances. We used polymorphisms in the genes encoding thiopurine S-methyltransferase (TPMT), gamma-glutamyl hydrolase (GGH) and the reduced folate carrier (SLC19A1) to assess the nature of chromosomal acquisition and its influence on genotype-phenotype concordance in cancer cells. TPMT and GGH activities in somatic cells were concordant with germline genotypes, whereas activities in leukemia cells were determined by chromosomal number and whether the acquired chromosomes contained a wild-type or variant allele. Leukemia cells that had acquired an additional chromosome containing a wild-type TPMT or GGH allele had significantly lower accumulation of thioguanine nucleotides or methotrexate polyglutamates, respectively. Among these genes, there was a comparable number of acquired chromosomes with wild-type and variant alleles. Therefore, chromosomal gain can alter the concordance of germline genotype and cancer cell phenotypes, indicating that allele-specific quantitative genotyping may be required to define cancer pharmacogenomics unequivocally.  相似文献   

13.
We estimate and partition genetic variation for height, body mass index (BMI), von Willebrand factor and QT interval (QTi) using 586,898 SNPs genotyped on 11,586 unrelated individuals. We estimate that ~45%, ~17%, ~25% and ~21% of the variance in height, BMI, von Willebrand factor and QTi, respectively, can be explained by all autosomal SNPs and a further ~0.5-1% can be explained by X chromosome SNPs. We show that the variance explained by each chromosome is proportional to its length, and that SNPs in or near genes explain more variation than SNPs between genes. We propose a new approach to estimate variation due to cryptic relatedness and population stratification. Our results provide further evidence that a substantial proportion of heritability is captured by common SNPs, that height, BMI and QTi are highly polygenic traits, and that the additive variation explained by a part of the genome is approximately proportional to the total length of DNA contained within genes therein.  相似文献   

14.
Rieger syndrome is an autosomal dominant disorder of morphogenesis in which previous cytogenetic arrangements have suggested chromosome 4 as a candidate chromosome. Using a group of highly polymorphic short tandem repeat polymorphisms (STRP), including a new tetranucleotide repeat for epidermal growth factor (EGF), significant linkage of Rieger syndrome to 4q markers has been identified. Tight linkage to EGF supports its role as a candidate gene, although a recombinant in an unaffected individual has been identified. This study demonstrates the utility of using polymorphic STRP markers when only a limited number of small families are available for study.  相似文献   

15.
Genomic imprinting is an epigenetic modification that results in expression from only one of the two parental copies of a gene. Differences in methylation between the two parental chromosomes are often observed at or near imprinted genes. Beckwith-Wiedemann syndrome (BWS), which predisposes to cancer and excessive growth, results from a disruption of imprinted gene expression in chromosome band 11p15.5. One third of individuals with BWS lose maternal-specific methylation at KvDMR1, a putative imprinting control region within intron 10 of the KCNQ1 gene, and it has been proposed that this epimutation results in aberrant imprinting and, consequently, BWS1, 2. Here we show that paternal inheritance of a deletion of KvDMR1 results in the de-repression in cis of six genes, including Cdkn1c, which encodes cyclin-dependent kinase inhibitor 1C. Furthermore, fetuses and adult mice that inherited the deletion from their fathers were 20-25% smaller than their wildtype littermates. By contrast, maternal inheritance of this deletion had no effect on imprinted gene expression or growth. Thus, the unmethylated paternal KvDMR1 allele regulates imprinted expression by silencing genes on the paternal chromosome. These findings support the hypothesis that loss of methylation in BWS patients activates the repressive function of KvDMR1 on the maternal chromosome, resulting in abnormal silencing of CDKN1C and the development of BWS.  相似文献   

16.
17.
18.
The activins (dimers of betaA or betaB subunits, encoded by the genes Inhba and Inhbb, respectively) are TGF-beta superfamily members that have roles in reproduction and development. Whereas mice homozygous for the Inhba-null allele demonstrate disruption of whisker, palate and tooth development, leading to neonatal lethality, homozygous Inhbb-null mice are viable, fertile and have eye defects. To determine if these phenotypes were due to spatiotemporal expression differences of the ligands or disruption of specific ligand-receptor interactions, we replaced the region of Inhba encoding the mature protein with Inhbb, creating the allele Inhbatm2Zuk (hereafter designated InhbaBK). Although the craniofacial phenotypes of the Inhba-null mutation were rescued by the InhbaBK allele, somatic, testicular, genital and hair growth were grossly affected and influenced by the dosage and bioactivity of the allele. Thus, functional compensation within the TGF-beta superfamily can occur if the replacement gene is expressed appropriately. The novel phenotypes in these mice further illustrate the usefulness of insertion strategies for defining protein function.  相似文献   

19.
A classic problem in population and evolutionary biology is to understand how a population optimizes its fitness in fluctuating environments. A population might enhance its fitness by allowing individual cells to stochastically transition among multiple phenotypes, thus ensuring that some cells are always prepared for an unforeseen environmental fluctuation. Here we experimentally explore how switching affects population growth by using the galactose utilization network of Saccharomyces cerevisiae. We engineered a strain that randomly transitions between two phenotypes as a result of stochastic gene expression. Each phenotype was designed to confer a growth advantage over the other phenotype in a certain environment. When we compared the growth of two populations with different switching rates, we found that fast-switching populations outgrow slow switchers when the environment fluctuates rapidly, whereas slow-switching phenotypes outgrow fast switchers when the environment changes rarely. These results suggest that cells may tune inter-phenotype switching rates to the frequency of environmental changes.  相似文献   

20.
Mammals compensate for different doses of X-chromosome-linked genes in male (XY) and female (XX) somatic cells by terminally inactivating all but one X chromosome in each cell. A transiently inactive X chromosome is also found in germ cells, specifically in premeiotic oogenic cells and in meiotic and postmeiotic spermatogenic cells. Here we show that the Xist gene, which is a expressed predominantly from the inactive X-chromosome in female somatic cells, is also expressed in germ cells of both sexes, but only at those stages when an inactive X chromosome is present. This suggests support for the putative role of Xist as a regulator of X-chromosome inactivation and suggest a common mechanism for the initiation and/or maintenance of X-chromosome inactivation in all cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号