首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Druitt TH  Costa F  Deloule E  Dungan M  Scaillet B 《Nature》2012,482(7383):77-80
Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.  相似文献   

2.
The majority of volcanic products on Mars are thought to be mafic and effusive. Explosive eruptions of basic to ultrabasic chemistry are expected to be common, but evidence for them is rare and mostly confined to very old surface features. Here we present new image and topographic data from the High Resolution Stereo Camera that reveal previously unknown traces of an explosive eruption at 30 degrees N and 149 degrees E on the northwestern flank of the shield volcano Hecates Tholus. The eruption created a large, 10-km-diameter caldera approximately 350 million years ago. We interpret these observations to mean that large-scale explosive volcanism on Mars was not confined to the planet's early evolution. We also show that glacial deposits partly fill the caldera and an adjacent depression. Their age, derived from crater counts, is about 5 to 24 million years. Climate models predict that near-surface ice is not stable at mid-latitudes today, assuming a thermo-dynamic steady state. Therefore, the discovery of very young glacial features at Hecates Tholus suggests recent climate changes. We show that the absolute ages of these very recent glacial deposits correspond very well to a period of increased obliquity of the planet's rotational axis.  相似文献   

3.
Amelung F  Jónsson S  Zebker H  Segall P 《Nature》2000,407(6807):993-996
Volcanic uplift, caused by the accumulation of magma in subsurface reservoirs, is a common precursor to eruptions. But, for some volcanoes, uplift of metres or more has not yet led to an eruption. Here we present displacement maps of volcanoes in the Galápagos Islands, constructed using satellite radar interferometry, that might help explain this dichotomy. We show that all but one of the seven volcanoes on the islands of Isabela and Fernandina deformed during 1992-99. Cerro Azul and Fernandina erupted during the observation period and show evidence of inflation, co-eruptive deflation and shallow dyke intrusion. In contrast, the largest volcano, Sierra Negra, has not erupted, yet exhibits spatially and temporally variable deformation, with a maximum uplift of 2.7 m between 1992 and 1999, which can be modelled by a shallow inflating sill. Inflation during 1997-98, however, was accompanied by 'trapdoor' faulting on a steeply dipping fracture system within the caldera. Repeated trapdoor faulting over geological time has formed an arcuate intra-caldera ridge within Sierra Negra and may have acted to relax stresses above the magma chamber, inhibiting summit eruptions. Similar processes may help explain large uplift unaccompanied by eruptive activity at other volcanoes.  相似文献   

4.
Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallaj?kull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18?years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5?mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ~0.05?km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallaj?kull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.  相似文献   

5.
Fox CG  Chadwick WW  Embley RW 《Nature》2001,412(6848):727-729
Our understanding of submarine volcanic eruptions has improved substantially in the past decade owing to the recent ability to remotely detect such events and to then respond rapidly with synoptic surveys and sampling at the eruption site. But these data are necessarily limited to observations after the event. In contrast, the 1998 eruption of Axial volcano on the Juan de Fuca ridge was monitored by in situ sea-floor instruments. One of these instruments, which measured bottom pressure as a proxy for vertical deformation of the sea floor, was overrun and entrapped by the 1998 lava flow. The instrument survived-being insulated from the molten lava by the solidified crust-and was later recovered. The data serendipitously recorded by this instrument reveal the duration, character and effusion rate of a sheet flow eruption on a mid-ocean ridge, and document over three metres of lava-flow inflation and subsequent drain-back. After the brief two-hour eruption, the instrument also measured gradual subsidence of 1.4 metres over the next several days, reflecting deflation of the entire volcano summit as magma moved into the adjacent rift zone. These findings are consistent with our understanding of submarine lava effusion, as previously inferred from seafloor observations, terrestrial analogues, and laboratory simulations.  相似文献   

6.
Scaillet B  Pichavant M  Cioni R 《Nature》2008,455(7210):216-219
Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.  相似文献   

7.
Hales TC  Abt DL  Humphreys ED  Roering JJ 《Nature》2005,438(7069):842-845
Flood basalts appear to form during the initiation of hotspot magmatism. The Columbia River basalts (CRB) represent the largest volume of flood basalts associated with the Yellowstone hotspot, yet their source appears to be in the vicinity of the Wallowa Mountains, about 500 km north of the projected hotspot track. These mountains are composed of a large granitic pluton intruded into a region of oceanic lithosphere affinity. The elevation of the interface between Columbia River basalts and other geological formations indicates that mild pre-eruptive subsidence took place in the Wallowa Mountains, followed by syn-eruptive uplift of several hundred metres and a long-term uplift of about 2 km. The mapped surface uplift mimics regional topography, with the Wallowa Mountains in the centre of a 'bull's eye' pattern of valleys and low-elevation mountains. Here we present the seismic velocity structure of the mantle underlying this region and erosion-corrected elevation maps of lava flows, and show that an area of reduced mantle melt content coincides with the 200-km-wide topographic uplift. We conclude that convective downwelling and detachment of a compositionally dense plutonic root can explain the timing and magnitude of Columbia River basalt magmatism, as well as the surface uplift and existence of the observed melt-depleted mantle.  相似文献   

8.
Church JA  White NJ  Arblaster JM 《Nature》2005,438(7064):74-77
Ocean thermal expansion contributes significantly to sea-level variability and rise. However, observed decadal variability in ocean heat content and sea level has not been reproduced well in climate models. Aerosols injected into the stratosphere during volcanic eruptions scatter incoming solar radiation, and cause a rapid cooling of the atmosphere and a reduction in rainfall, as well as other changes in the climate system. Here we use observations of ocean heat content and a set of climate simulations to show that large volcanic eruptions result in rapid reductions in ocean heat content and global mean sea level. For the Mt Pinatubo eruption, we estimate a reduction in ocean heat content of about 3 x 10(22) J and a global sea-level fall of about 5 mm. Over the three years following such an eruption, we estimate a decrease in evaporation of up to 0.1 mm d(-1), comparable to observed changes in mean land precipitation. The recovery of sea level following the Mt Pinatubo eruption in 1991 explains about half of the difference between the long-term rate of sea-level rise of 1.8 mm yr(-1) (for 1950-2000), and the higher rate estimated for the more recent period where satellite altimeter data are available (1993-2000).  相似文献   

9.
Tanaka KL 《Nature》2005,437(7061):991-994
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.  相似文献   

10.
巴彦浩特盆地沉降史分析   总被引:1,自引:0,他引:1  
运用回剥分析技术对巴彦浩特盆地的沉降史作了定量方面的研究,认为巴彦浩特盆地是在早古生代的古隆起基础上发育起来的,共经历了两个隆升期和三个沉降期,两个隆升期是:三叠纪—早侏罗世、晚白垩世;三个沉降期是:志留纪—二叠纪、中侏罗世—早白垩世及第三纪—第四纪.相应地形成了四种类型的盆地,即志留纪—二叠纪前陆盆地(南部坳陷带)、石炭纪—二叠纪裂陷槽(东部坳陷带及其以东地区,为贺兰裂陷槽的一部分)、中侏罗世—早白垩世断陷盆地及新生代的坳陷盆地.晚古生代时,沉降主要发生在盆地的南部坳陷带及东部坳陷带内,侏罗纪时,南部坳陷带隆起,西部坳陷带及东部坳陷带为主要沉降区,受断陷活动控制,其间为中央隆起带分隔.早白垩世盆地全面下沉,成为统一盆地  相似文献   

11.
Constant elevation of southern Tibet over the past 15 million years   总被引:53,自引:0,他引:53  
The uplift of the Tibetan plateau, an area that is 2,000 km wide, to an altitude of about 5,000 m has been shown to modify global climate and to influence monsoon intensity. Mechanical and thermal models for homogeneous thickening of the lithosphere make specific predictions about uplift rates of the Tibetan plateau, but the precise history of the uplift of the plateau has yet to be confirmed by observations. Here we present well-preserved fossil leaf assemblages from the Namling basin, southern Tibet, dated to approximately 15 Myr ago, which allow us to reconstruct the temperatures within the basin at that time. Using a numerical general circulation model to estimate moist static energy at the location of the fossil leaves, we reconstruct the elevation of the Namling basin 15 Myr ago to be 4,689 +/- 895 m or 4,638 +/- 847 m, depending on the reference data used. This is comparable to the present-day altitude of 4,600 m. We conclude that the elevation of the southern Tibetan plateau probably has remained unchanged for the past 15 Myr.  相似文献   

12.
Sulphur isotope evidence for an oxic Archaean atmosphere   总被引:1,自引:0,他引:1  
Ohmoto H  Watanabe Y  Ikemi H  Poulson SR  Taylor BE 《Nature》2006,442(7105):908-911
The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than approximately 2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around 2.4 Gyr ago. This is because the only mechanism known to produce MIF-S has been ultraviolet photolysis of volcanic sulphur dioxide gas in an oxygen-poor atmosphere. Here we report the absence of MIF-S throughout approximately 100-m sections of 2.76-Gyr-old lake sediments and 2.92-Gyr-old marine shales in the Pilbara Craton, Western Australia. We propose three possible interpretations of the MIF-S geologic record: (1) the level of atmospheric oxygen fluctuated greatly during the Archaean era; (2) the atmosphere has remained oxic since approximately 3.8 Gyr ago, and MIF-S in sedimentary rocks represents times and regions of violent volcanic eruptions that ejected large volumes of sulphur dioxide into the stratosphere; or (3) MIF-S in rocks was mostly created by non-photochemical reactions during sediment diagenesis, and thus is not linked to atmospheric chemistry.  相似文献   

13.
Pritchard ME  Simons M 《Nature》2002,418(6894):167-171
Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10 km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17 km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile.  相似文献   

14.
Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes.  相似文献   

15.
根据美国Smithsonian研究院的全球火山计划发布火山喷发年表,筛选出1525-2000年强火山喷发(火山喷发指数IVE≥4),并分为强火山喷发(IVE=4)和极强火山喷发(IVE≥5);利用Gergis重建了1525-2000年ENSO 年表,得到不同类型的ENSO 事件,分别对强火山喷发和ENSO 事件进行10a累计统计.对1525-2000年强火山喷发次数和ENSO事件次数进行匹配.结果表明:1525-2000年,强火山喷发出现195次,其中IVE=4的强火山喷发153次,极强火山喷发42次;ENSO 事件出现399次,包括188次厄尔尼诺事件和211次拉尼娜事件.强火山喷发后的ENSO 事件次数明显多于出现前2a内无强火山喷发的ENSO 事件次数,且强火山喷发后的ENSO 事件中厄尔尼诺、拉尼娜次数相当,而出现前2a内无强火山喷发的ENSO 事件中拉尼娜事件明显多于厄尔尼诺事件.强火山喷发后的厄尔尼诺事件出现137次,拉尼娜出现136次,两者出现次数持平.不同强度的火山喷发后,厄尔尼诺事件与拉尼娜事件出现概率基本相等.   相似文献   

16.
柴北缘构造带泥盆纪构造属性研究   总被引:2,自引:2,他引:0  
根据露头及钻井资料,依据沉积学理论,对柴达木盆地东北部泥盆系地层厚度、碎屑颗粒组成、锆石年龄、超覆关系和沉积体系展布等进行研究。结果表明:柴北缘地区(包括柴北缘构造带与欧龙布鲁克微板块)泥盆纪发育自南向北展布的沉积体系,碎屑物质来源于由多个前泥盆纪构造岩片组成的造山带;该阶段柴北缘构造带构造属性既不是前陆盆地也不是裂陷槽,而是由多个前泥盆纪构造岩片组成的造山带;该造山带隆升开始于距今约465 Ma,遭受剥蚀开始于距今约430 Ma,其隆升可能持续到晚石炭世甚至二叠纪早期,初步推断该造山带至少存在了190 Ma,包括距今465~430 Ma的山体隆升与距今430~275 Ma的山体剥蚀阶段。  相似文献   

17.
Deep roots of the Messinian salinity crisis   总被引:3,自引:0,他引:3  
The Messinian salinity crisis--the desiccation of the Mediterranean Sea between 5.96 and 5.33 million years (Myr) ago--was one of the most dramatic events on Earth during the Cenozoic era. It resulted from the closure of marine gateways between the Atlantic Ocean and the Mediterranean Sea, the causes of which remain enigmatic. Here we use the age and composition of volcanic rocks to reconstruct the geodynamic evolution of the westernmost Mediterranean from the Middle Miocene epoch to the Pleistocene epoch (about 12.1-0.65 Myr ago). Our data show that a marked shift in the geochemistry of mantle-derived volcanic rocks, reflecting a change from subduction-related to intraplate-type volcanism, occurred between 6.3 and 4.8 Myr ago, largely synchronous with the Messinian salinity crisis. Using a thermomechanical model, we show that westward roll back of subducted Tethys oceanic lithosphere and associated asthenospheric upwelling provides a plausible mechanism for producing the shift in magma chemistry and the necessary uplift (approximately 1 km) along the African and Iberian continental margins to close the Miocene marine gateways, thereby causing the Messinian salinity crisis.  相似文献   

18.
Zhang-Xuan thermal uplift and its genesis   总被引:1,自引:0,他引:1  
Variousformsofcrustdeformationaccompany ingthelithospherethinninginNorthChinasincethe Mesozoichavedrawnattentionfrommanygeologists.Therecordsofdeformationandthermalevolutionary historyindifferentperiodsarequitecompletefortwo upliftbelts,whichlocatedrespectivelyatthenearE WstrikingYanshanMt.intersectingwiththeNNE strikingTaihangMt.andDaHigganMt.risingin theMesozoic,nowtheZhangjiakou Xuanhuaand Chifeng Harqinareas.Theformerareahasbeenafo cusofattentionforitsgoldfield[1],anditstectonic se…  相似文献   

19.
Although the Moon currently has no internally generated magnetic field, palaeomagnetic data, combined with radiometric ages of Apollo samples, provide evidence for such a magnetic field from approximately 3.9 to 3.6 billion years (Gyr) ago, possibly owing to an ancient lunar dynamo. But the presence of a lunar dynamo during this time period is difficult to explain, because thermal evolution models for the Moon yield insufficient core heat flux to power a dynamo after approximately 4.2 Gyr ago. Here we show that a transient increase in core heat flux after an overturn of an initially stratified lunar mantle might explain the existence and timing of an early lunar dynamo. Using a three-dimensional spherical convection model, we show that a dense layer, enriched in radioactive elements (a 'thermal blanket'), at the base of the lunar mantle can initially prevent core cooling, thereby inhibiting core convection and magnetic field generation. Subsequent radioactive heating progressively increases the buoyancy of the thermal blanket, ultimately causing it to rise back into the mantle. The removal of the thermal blanket, proposed to explain the eruption of thorium- and titanium-rich lunar mare basalts, plausibly results in a core heat flux sufficient to power a short-lived lunar dynamo.  相似文献   

20.
Rubin KH  Fletcher CH  Sherman C 《Nature》2000,408(6813):675-681
Giant tsunamis, generated by submarine landslides in the Hawaiian Islands, have been thought to be responsible for the deposition of chaotic gravels high on the southern coastal slopes of the islands of Lana'i and Moloka'i, Hawaii. Here we investigate this hypothesis, using uranium-thorium dating of the Hulopoe gravel (on Lana'i) and a study of stratigraphic relationships, such as facies changes and hiatuses, within the deposit. The Hulopoe gravel contains corals of two age groups, representing marine isotope stages 5e and 7 (approximately 135,000 and 240,000 years ago, respectively), with significant geographical and stratigraphic ordering. We show that the Hulopoe gravel was formed by multiple depositional events, separated by considerable periods of time, thus invalidating the main premise of the 'giant wave' hypothesis. Instead, the gravels were probably deposited during interglacial periods (when sea level was relatively high) by typical Hawaiian shoreline processes such as seasonal wave patterns, storm events and possibly 'normal' tsunamis, and reached their present height by uplift of Lana'i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号