首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hill RS  Walsh CA 《Nature》2005,437(7055):64-67
Rapidly advancing knowledge of genome structure and sequence enables new means for the analysis of specific DNA changes associated with the differences between the human brain and that of other mammals. Recent studies implicate evolutionary changes in messenger RNA and protein expression levels, as well as DNA changes that alter amino acid sequences. We can anticipate having a systematic catalogue of DNA changes in the lineage leading to humans, but an ongoing challenge will be relating these changes to the anatomical and functional differences between our brain and that of our ancient and more recent ancestors.  相似文献   

2.
3.
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.  相似文献   

4.
The use of comparative genomics to infer genome function relies on the understanding of how different components of the genome change over evolutionary time. The aim of such comparative analysis is to identify conserved, functionally transcribed sequences such as protein-coding genes and non-coding RNA genes, and other functional sequences such as regulatory regions, as well as other genomic features. Here, we have compared the entire human chromosome 21 with syntenic regions of the mouse genome, and have identified a large number of conserved blocks of unknown function. Although previous studies have made similar observations, it is unknown whether these conserved sequences are genes or not. Here we present an extensive experimental and computational analysis of human chromosome 21 in an effort to assign function to sequences conserved between human chromosome 21 (ref. 8) and the syntenic mouse regions. Our data support the presence of a large number of potentially functional non-genic sequences, probably regulatory and structural. The integration of the properties of the conserved components of human chromosome 21 to the rapidly accumulating functional data for this chromosome will improve considerably our understanding of the role of sequence conservation in mammalian genomes.  相似文献   

5.
Stevens CF 《Nature》2001,411(6834):193-195
A hallmark of mammalian brain evolution is the disproportionate increase in neocortical size as compared with subcortical structures. Because primary visual cortex (V1) is the most thoroughly understood cortical region, the visual system provides an excellent model in which to investigate the evolutionary expansion of neocortex. I have compared the numbers of neurons in the visual thalamus (lateral geniculate nucleus; LGN) and area V1 across primate species. Here I find that the number of V1 neurons increases as the 3/2 power of the number of LGN neurons. As a consequence of this scaling law, the human, for example, uses four times as many V1 neurons per LGN neuron (356) to process visual information as does a tarsier (87). I argue that the 3/2 power relationship is a natural consequence of the organization of V1, together with the requirement that spatial resolution in V1 should parallel the maximum resolution provided by the LGN. The additional observation that thalamus/neocortex follows the same evolutionary scaling law as LGN/V1 may suggest that neocortex generally conforms to the same organizational principle as V1.  相似文献   

6.
We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.  相似文献   

7.
Kellis M  Birren BW  Lander ES 《Nature》2004,428(6983):617-624
Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.  相似文献   

8.
神经元间的连接以先增大后减小的方式演化,这提示了大脑神经元网络在演化过程中存在“剪除”过程。以“剪除”为启发,本文首先使用数学方法对大脑网络进行建模,然后基于大脑网络中的神经元连接方式,设计了网络减边演化算法。最后,考虑布线消耗和信息传输之间的效率,建立了大神经元优先与距离优先的演化博弈模型,探索该模型对脑网络拓扑结构特性的影响。实验结果显示,在此演化过程中呈现了中心节点度≈200、小世界特性S>1和高效率代价比等性质, 表明该算法能够有效模拟仿神经元剪除机制。上述算法和模型为有效模拟高效低能耗的脑网络提供了一种新途径。  相似文献   

9.
10.
能源植物高粱基因组研究进展   总被引:1,自引:0,他引:1  
 回顾了高粱基因组学研究的发展进程, 概述了初期组学数据的积累、参考基因组的破译及新一代测序技术和数据分析方法引领下的组学研究进展;介绍了高粱基因组的结构, 从比较基因组学的角度, 分析了高粱基因组的进化及其特性;探讨了高粱功能基因组的研究方法和研究进展, 总结了已经发掘的高粱关键基因和遗传位点, 对高粱组学数据资源进行了归纳。对高粱基因组学的发展方向进行了展望。  相似文献   

11.
结合人体运动特征的行为识别   总被引:6,自引:0,他引:6  
人体运动具有马尔可夫性质,即当前状态只受前一状态的影响.目前为止,用于人体行为识别的隐马尔可夫模型(HMM)大多使用的是全连接结构(Full-Connected structure), 并且没有把状态数目的选取和状态转移条件与人体运动特性间的关系作为研究重点.本文针对这种关系提出了基于"从左到右三状态半连接HMM"的人体行为识别方法,为每个状态的输出概率引入了权重的概念.实验表明,该方法能够在降低运算复杂度的同时,提高行为识别率,从而证明了人体运动特性分析在HAR领域中的应用价值.  相似文献   

12.
Sequence identification of 2,375 human brain genes.   总被引:81,自引:0,他引:81  
We recently described a new approach for the rapid characterization of expressed genes by partial DNA sequencing to generate 'expressed sequence tags'. From a set of 600 human brain complementary DNA clones, 348 were informative nuclear-encoded messenger RNAs. We have now partially sequenced 2,672 new, independent cDNA clones isolated from four human brain cDNA libraries to generate 2,375 expressed sequence tags to nuclear-encoded genes. These sequences, together with 348 brain expressed sequence tags from our previous study, comprise more than 2,500 new human genes and 870,769 base pairs of DNA sequence. These data represent an approximate doubling of the number of human genes identified by DNA sequencing and may represent as many as 5% of the genes in the human genome.  相似文献   

13.
Findings from single-cell recording studies suggest that a comparison of the outputs of different pools of selectively tuned lower-level sensory neurons may be a general mechanism by which higher-level brain regions compute perceptual decisions. For example, when monkeys must decide whether a noisy field of dots is moving upward or downward, a decision can be formed by computing the difference in responses between lower-level neurons sensitive to upward motion and those sensitive to downward motion. Here we use functional magnetic resonance imaging and a categorization task in which subjects decide whether an image presented is a face or a house to test whether a similar mechanism is also at work for more complex decisions in the human brain and, if so, where in the brain this computation might be performed. Activity within the left dorsolateral prefrontal cortex is greater during easy decisions than during difficult decisions, covaries with the difference signal between face- and house-selective regions in the ventral temporal cortex, and predicts behavioural performance in the categorization task. These findings show that even for complex object categories, the comparison of the outputs of different pools of selectively tuned neurons could be a general mechanism by which the human brain computes perceptual decisions.  相似文献   

14.
Humans differ from other animals in many aspects of anatomy, physiology, and behaviour; however, the genotypic basis of most human-specific traits remains unknown. Recent whole-genome comparisons have made it possible to identify genes with elevated rates of amino acid change or divergent expression in humans, and non-coding sequences with accelerated base pair changes. Regulatory alterations may be particularly likely to produce phenotypic effects while preserving viability, and are known to underlie interesting evolutionary differences in other species. Here we identify molecular events particularly likely to produce significant regulatory changes in humans: complete deletion of sequences otherwise highly conserved between chimpanzees and other mammals. We confirm 510 such deletions in humans, which fall almost exclusively in non-coding regions and are enriched near genes involved in steroid hormone signalling and neural function. One deletion removes a sensory vibrissae and penile spine enhancer from the human androgen receptor (AR) gene, a molecular change correlated with anatomical loss of androgen-dependent sensory vibrissae and penile spines in the human lineage. Another deletion removes a forebrain subventricular zone enhancer near the tumour suppressor gene growth arrest and DNA-damage-inducible, gamma (GADD45G), a loss correlated with expansion of specific brain regions in humans. Deletions of tissue-specific enhancers may thus accompany both loss and gain traits in the human lineage, and provide specific examples of the kinds of regulatory alterations and inactivation events long proposed to have an important role in human evolutionary divergence.  相似文献   

15.
Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.  相似文献   

16.
The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.  相似文献   

17.
Lander ES 《Nature》2011,470(7333):187-197
The sequence of the human genome has dramatically accelerated biomedical research. Here I explore its impact, in the decade since its publication, on our understanding of the biological functions encoded in the genome, on the biological basis of inherited diseases and cancer, and on the evolution and history of the human species. I also discuss the road ahead in fulfilling the promise of genomics for medicine.  相似文献   

18.
The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.  相似文献   

19.
J G Flanagan  T H Rabbitts 《Nature》1982,300(5894):709-713
Cosmid clones containing the human gamma, epsilon and alpha heavy chain constant region genes and an epsilon pseudogene have been isolated. All these genes have a switch sequence detectable by hybridization. We have studied overlapping cosmids covering two separate regions of the genome, and the gene order in each of these regions was found to be gamma-gamma-epsilon-alpha. This implies an evolutionary duplication in this multigene family involving gamma, epsilon and alpha genes.  相似文献   

20.
Evolutionary analyses of the human genome   总被引:32,自引:0,他引:32  
Li WH  Gu Z  Wang H  Nekrutenko A 《Nature》2001,409(6822):847-849
The completion of the human genome will greatly accelerate the development of a new branch of science--evolutionary genomics. We can now directly address important questions about the evolutionary history of human genes and their regulatory sequences. Computational analyses of the human genome will reveal the number of genes and repetitive elements, the extent of gene duplication and compositional heterogeneity in the human genome, and the extent of domain shuffling and domain sharing among proteins. Here we present some first glimpses of these features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号