首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高双电层电容器在有机电解液中的容量,研究了载炭量、牯接剂以及导电剂对电极性能的影响,并进行优化处理.采用交流阻抗及恒流充放电法对电容器性能进行测试.实验结果表明,优化后电容器的等效串联内阻大大降低;电容器在有机电解液中的电压能达到2.5V,电容器的比容量可达到30.31F/g,提高了电容器的循环性能.  相似文献   

2.
采用一步电化学法在离子液体中电解剥离石墨棒制得1-丁基-3-甲基咪唑四氟硼酸盐离子液体/石墨烯([Bmim][BF_4]/GNs)复合物,取上层复合物分散液与四氟硼酸螺环季铵盐的碳酸丙烯酯电解质(SBP-BF_4/PC,1. 0 mol/L)以不同的体积比进行混合制备[Bmim][BF_4]/GNs+SBP-BF_4/PC混合电解质(BGSP).通过循环伏安、交流阻抗和恒流充放电等方法对不同混合比的BGSP电解质在超级电容器中表现的电化学性能进行研究,结果表明,以体积比为1:1混合的BGSP电解质性能最佳,其电化学窗口近5 V;充放电效率达到97. 95%;比电容最高可达到163. 16 F/g,性能明显优于单纯的SBP-BF_4/PC电解液.  相似文献   

3.
电聚合条件对聚吡咯钽电解电容器容量与损耗的影响   总被引:1,自引:0,他引:1  
研究了导电聚吡咯在多孔Ta/Ta2O5阳极体(1μF/16V)表面的制备方法,采用恒电流电聚合法在该阳极体表面沉积一层导电聚吡咯作为电解电容器的阴极,着重探讨了支撑电解液的组成,阳极电流的大小及其施加方式对所形成的电容器容量和损耗因子的影响,结果表明:吡咯单体和支撑电解质的浓度比保持在3至4之间对电容器的性能是有益的,而过高浓度的吡咯单体和支撑电解质则会产生不利影响;随着阳极电流的增大,电容器的性能变差,因此阳避孕药电流不宜超过1.2mA.在以乙腈和1,2-丙二醇碳酸酯的混合物为溶剂的支撑电解液中,采用先施加大的阳极电流而后施加小电流的方法,可以获得平均容量达到额定容量98%以上且损耗因子较小(tgδ)小于1.3%)的样品。  相似文献   

4.
采用2种碳酸乙烯酯基电解液制作了基于活性炭正极和软碳负极的软包装锂离子电容器(LICs),研究了器件的直流内阻、倍率、阻抗和循环稳定性等电化学性能.结果表明:通过向碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合溶剂中加入碳酸丙烯酯(PC),得到双氟磺酰亚胺锂电解液(1.2 mol/L LiFSI : (EC/PC/DEC)), 可使LICs具有更低的内阻和更佳的倍率性能,而且低温下其电化学性能亦有显著提高.研究结果对于开发低内阻和低温LICs的电解液具有重要意义.  相似文献   

5.
乙腈、碳酸丙烯酯电解液超级电容器性能研究   总被引:1,自引:0,他引:1  
张宝宏  鞠群 《应用科技》2005,32(2):62-64
以活性炭作活性物质,用循环伏安、交流阻抗等方法测试了乙腈及碳酸丙烯酯的1mol/L高氯酸锂溶液(1mol/L的LiClO4/AN和LiClO4/PC)作电解液的超级电容器性能,根据乙腈电解液内阻小、比容量大、碳酸丙烯酯电解液循环和保压性能优秀的特性,将2种电解液混合,测试了混合电解液的电导率,等体积比混合的混合电解液(1mol/L的LiClO4/AN PC)电导率达15.8mS/cm2.应用于超级电容器后,大电流放电性能和比容量与LiClO4/AN电解液体系接近,而在循环性能、漏电流和电压保持能力方面较之有大幅提高.  相似文献   

6.
提出了一种有机体系超级电容器用中孔炭电极的直接成型制备方法。以热塑性酚醛树脂为前驱体,加入六次甲基四胺固化、粉压成型后进行CO2活化,制备了中孔发达的炭电极。该电极比表面积1563 m2/g,孔容1.87cm3/g,其中孔孔容占75.9%,在有机电解液1mol/L Et4NBF4/PC中具有良好的电化学性能,比电容达108 F/g,大电流倍率性能良好。  相似文献   

7.
目的研究LiFePO4在不同锂盐电解液体系中的电化学性能。方法采用恒电流充电、放电和循环伏安方法来进行相关研究。结果在不同锂盐(LiClO4、LiBF4以及LiPF6)和不同碳酸酯混合溶剂(EC-DEC、EC-DMC或者PC-DMC)所组成的电解液中,电极材料在1 M LiClO4/EC-DMC和1 M LiPF6/EC-DMC电解液中的电化学性能较好。其中在1 M LiClO4/EC-DMC电解液中充放电容量最高,而在1 M LiBF4/EC-DMC电解液中的充电、放电容量最低。结论锂盐本身及电解液的电导率对磷酸亚铁锂电化学性能有较大的影响。  相似文献   

8.
以方型铝壳13Ah LiFePO_4锂离子电池作为研究对象,对比考察两类不同的成膜添加剂碳酸亚乙烯酯(VC)和亚硫酸丙烯酯(PS)对电池性能的影响.通过对分容后电池的内阻和容量、倍率性能、脉冲性能(HPPC)、常温循环性能和高温循环性能的数据分析,得出了在电解液中添加3%VC时,电池具有较低内阻,较高容量,较好的倍率、HPPC性能、常温循环和高温循环性能.  相似文献   

9.
采用一种新型的有机电解质盐四氟硼酸螺环季铵盐[(C4H8)2N][BF4],与1-甲基-3-丁基咪唑六氟磷酸盐离子液体([Bmim][PF6])以不同摩尔比混合形成了离子液体基电解液,以活性炭为电极,组装成超级电容器,通过循环伏安、交流阻抗以及恒流充放电等测试方法来研究其电化学性能.结果表明,超级电容器具有良好的电容特性、可逆性及循环特性,且电化学窗口可以达到4.8 V,是一种具有应用潜力的超级电容器电解液.  相似文献   

10.
探究了锂离子在混合电解液中的微观结构,本文利用分子动力学模拟的方法建立了多元混合电解液溶剂EC-DMC-DEC(ethylene carbonate-dimethyl carbonate-diethyl carbonate)模型,计算分析了零电场以及加电场下电解液混合溶剂的性质.计算结果表明:无电场时,电解液中没有接触离子对(CIP-contact ion pairs)和离子聚集体(AGG-aggregates)的存在;而在6V电压下,任何浓度的电解液均存在CIP,降低了锂盐的溶解度.电场的存在使得电解液溶剂分子的偶极矩与电场方向相一致,溶剂分子排列有序,降低了溶剂的介电常数,促使CIP和AGG的形成以及锂离子配位数的减少.因此,破坏电场下溶剂分子的有序性、增强溶剂的介电性质对于降低电解液中的离子缔合、改善电解液的性能是至关重要的,这对于今后电解液配方的设计选择有着指导意义.  相似文献   

11.
电解液的溶剂组成影响锂离子电池LiMn2O4正极材料的电化学性能.电解液在电极表面的氧化作用、电解液对电极材料的溶解性和电解液的电导率大小都是影响LiMn2O4电极容量、寿命以及电池倍率充放电性能的重要因素.本文研究了LiMn2O4正极材料在不同混合溶剂的电解液中的电化学性能,探讨了影响LiMn2O4正极材料性能的溶剂因素.  相似文献   

12.
有机电解液对双电层电容器性能影响   总被引:1,自引:0,他引:1  
采用石油焦基高比表面积活性炭作为电极材料,分别以1 mol/L Et4NBF4/PC(四乙基铵四氟硼酸盐/碳酸丙烯酯),Et4NBF4/AN(四乙基铵四氟硼酸盐/乙腈),Bu4NBF4/PC(四丁基铵四氟硼酸盐/碳酸丙烯酯)和Bu4NBF4/AN(四丁基铵四氟硼酸盐/乙腈)作为电解液,组装成有机体系双电层电容器。采用恒流充放电、循环伏安及交流阻抗等电化学手段对各电解液体系下的电化学行为进行了对比。实验结果表明:对于高微孔比率的电极材料,由于Et4N+(四乙基铵离子)的溶剂化离子半径小于Bu4N+(四丁基铵离子)的溶剂化离子半径,因此,Et4NBF4体系下的电荷存储密度和有效表面利用率更高,电容性能优于Bu4NBF4。此外,虽然PC体系的比容量略高于AN体系,但由于PC的电导率低于AN,致使其功率特性不如AN体系下的好。AN体系相比于PC体系具有更小的电荷传递阻抗和扩散阻抗,电容的频率响应性能要优于PC体系,更适宜在大功率场合下应用。  相似文献   

13.
探讨在EC+PC+DMC复合溶剂体系中LiODFB-TEABF4复合盐电解液与LiFePO4锂离子电池及AC双电层电容器的相容性规律.研究结果表明:在LiODFB基电解液中加入TEABF4能显著提高电解液的电导率;对于LiFePO4电池体系,电解液中的TEABF4参与了SEI膜的成膜过程,但TEABF4浓度过高不利于电极材料的容量的提高;对于AC电容器体系,加入TEABF4可以有效改善电容器的双电层储能行为,同时显著提高电容,当TEABF4浓度为0.3 mol/L时,电容达到最大,比不添加TEABF4的纯LiODFB盐电解液的电容大.  相似文献   

14.
锂离子电容器作为一种新型储能元件,兼具锂离子电池与双电层电容器的优点。颗粒状的Li_4Ti_5O_(12)(LTO)因其稳定的结构、良好的循环性能、较高的安全性能等优点,成为较理想的锂离子超级电容器(LIC)负极材料。但因其较差的导电性,使其在大电流充放电过程中容量衰减较快。为改善这一性能缺陷,在制备LTO过程中进行碳源掺入,导致制备的含碳颗粒状LTO具备优良的电子、离子电导率。为进一步改善LTO颗粒间的导电性,使用含SP/C、SP/G、SP/C/G的混合导电剂分别制成不同极片(记为LTO-C、LTO-G和LTO-GC)。在充放电过程中(电流密度为2~20 C),3种半电池LTO-G、LTO-C和LTO-GC的比容量分别是162 mAh/g~102 mAh/g、165 mAh/g~110 mAh/g和179 mAh/g~121 mAh/g。在大电流密度下LTO-GC较高的容量保持率说明GC改良的LTO颗粒立体导电网络对其倍率性能及电化学可逆性能的提高至关重要。  相似文献   

15.
纳米二氧化锰的电化学电容性能   总被引:3,自引:0,他引:3  
以MnSO4和K2S2O8为原料,采用液相法制得MnO2并制成电化学电容器电极;采用X射线衍射和扫描电镜对产物进行结构形貌表征,采用恒流充放电、循环伏安、交流阻抗等方法对MnO2电化学电容器电化学性能进行表征。研究结果表明:产物为纳米棒聚集而形成的纳米α-MnO2。充放电曲线由于电极在0.53V和0.36V(vs.Hg/HgO)处发生氧化还原反应而发生了明显弯曲,这有利于比容量的提高;在10^-3~10^4Hz频率范围内,阻抗曲线在0.2Hz以下出现“电荷饱和”,说明电极材料中储存的大部分电容量可得到利用,有效能量为48.3J/g,电极具有良好的倍率特征,其频率响应时间为12.5s;在低频区电极过程由阻挡层扩散控制,比容量可达到151F/g,但随着频率增加,比容量快速下降,100Hz以后比容量开始趋于0。  相似文献   

16.
(NiO+CoO)/活性炭超级电容器电极材料的制备及其性能   总被引:2,自引:0,他引:2  
以表面包覆7%Co(OH)2的球形Ni(OH)2为原料,在450℃热分解得到(NiO CoO)粉末,将其与活性炭(AC)按不同质量比混合均匀,得到超级电容器用(NiO CoO)/AC 复合电极材料.采用扫描电镜(SEM)、X 射线衍射(XRD)、热重分析(TG)等方法对样品进行物理性能测试,用循环伏安(CV)法研究不同配比的(NiO CoO)/AC复合电极在6mol/L KOH 电解液中的电化学性能,并对复合电极材料模拟电容器与活性炭模拟电容器进行恒流充放电测试.研究结果表明在6 mol/L KOH电解液中,当复合材料中的(NiO CoO)质量分数为6%时,所制备的单电极比电容量最大,为240 F/g,比纯活性炭电极的比电容(约160 F/g)提高50%;复合电极模拟电容器具有较好的可逆性和电化学性能.  相似文献   

17.
锂盐 碳酸丙烯脂(PC) N, N -二甲基甲酰胺 (DMF) 混合物是锂电池电解液的重要模拟体系.在前期工作中[1~2],我们研究了该电解质溶液体系的某些宏观物理化学性质.根据所得到的实验结果,分析了Li 在PC DMF混合溶剂中的溶剂化行为.但是宏观的研究方法很难对离子与溶剂之间的相互作用给出确切的描述.  相似文献   

18.
在活性炭超级电容器体系中,研究LiODFB与LiPF6组成的复合盐电解液与活性炭电极的相容性规律.研究结果表明:在LiODFB基电解液中加入LiPF6电解质盐能显著提高电解液的电导率;LiODFB-LiPF6复合盐电解液与活性炭电极材料有较好的相容性,但LiPF6浓度过大不利于双电层电容特性的发挥;在电解液中加入少量的LiPF6可有效增加双电层电容量;当LiPF6浓度为0.2 mol/L时,电容器容量达到最大;不添加LiPF6的纯LiODFB盐电解液的容最大,且l 500次循环的容量保持率超过96%.  相似文献   

19.
采用二次缩合溶胶-凝胶法制备锂离子电池正极材料Li1 xV3O8,首次放电容量达330 mA.h/g,循环15次后容量衰减7.6%。测试不同温度下放电时正极材料Li1 xV3O8中Li 的扩散系数DLi ;从动力学角度研究了温度放电倍率密度对电池性能的影响。结果表明,随着温度的增加,DLi 增大,比容量相应增大;当以0.02 C的放电倍率放电时,电容量较高,以0.08 C的放电倍率放电时,电容量衰减约50%。  相似文献   

20.
锂盐+碳酸丙烯脂(PC)+乙腈(AN)混合物是锂电池电解液的重要模拟体系.本文采用了^13C—NMR光谱技术研究了LiClO4在PC+AN混合溶剂中的溶剂化作用,根据溶剂分子中碳原子的化学位移随锂盐浓度以及溶剂组成的变化关系确定了与Li^+直接配位的溶剂分子上的原子,定量计算了Li^+第一溶剂化壳层中溶剂分子的分配情况,深入认识了体系中离子与分子溶剂相互作用的微观本质,从而为热力学性质和传输性质的解释提供依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号