首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Microconversion between murine H-2 genes integrated into yeast   总被引:9,自引:0,他引:9  
C J Wheeler  D Maloney  S Fogel  R S Goodenow 《Nature》1990,347(6289):192-194
Patchwork homology observed between divergent members of polymorphic multigene families is thought to reflect evolution by short-tract gene conversion (nonreciprocal recombination), although this mechanism cannot usually be confirmed in higher organisms. In contrast to meiotic conversions observed in laboratory yeast strains, apparent conversions between polymorphic sequences, such as the class I loci of the major histocompatibility complex (MHC), are short and do not seem to be associated with reciprocal recombination (crossover, exchanges). We have now integrated two nonallelic murine class I genes into yeast to characterize their meiotic recombination. We found no crossovers between the MHC genes, but short-tract 'microconversions' of 1-215 base-pairs were observed in about 6% of all meioses. Strikingly, one of these events was accompanied by a single base-pair mutation. These results underscore both the importance of meiotic gene conversion and sequence heterology in determining conversion patterns between divergent genes.  相似文献   

2.
Gene mapping of a mouse coat mutation has been investigated. First, 100 10-bp random primers were used to amplify DNA, but the mutation could not be located by this method because there were no correlation between the amplified products and coat phenotypes. Second, by usingIdh1, Car2, Mup1, Pgb1, Hbb, Es10, Es1, Mod1, Gdc1, Ce2, Es3 as genetic markers, linkage test crosses (two-point test) consisting of intercrossing uncovered BALB/c mice (homozygotes) to CBA/N and C57BV6 mice with normal hair and backcrossing the heterozygotes of the F1 to the uncovered BALB/c mice were made. It was soon evident that the mutation was linked toEs3 on chromosome 11. Furthermore, three-point test was made by usingEs3 and D11Mit8 (a microsatellite DNA) as genetic markers. The result showed that the mutation was linked toEs3 with the percentage recombination of (7.89 ± 2.19)%, and linked to Dl1Mit8 with the percentage recombination of (26.30± 3.57)%. The percentage recombination betweenEs3 and D11Mit8 was (32.90±3.81)%. The mutation was named Uncovered, with the symbolUncv. According to the recombinations, the loci order was D11Mit8-26.30±3.57-Uncv- 7.89 -2.19-Es3. From the location on the chromosome, it was concluded that the mutation was a new mutation which affected the skin and hair structure of mouse. TheUncv has entered MGD (Mouse Genome Database).  相似文献   

3.
Expression of recessive alleles by chromosomal mechanisms in retinoblastoma   总被引:48,自引:0,他引:48  
Inheritance of a mutation at the Rb-1 locus, which has been mapped to band q14 of human chromosome 13, results in predisposition to retinoblastoma. Cloned DNA segments homologous to arbitrary loci of human chromosome 13 and which reveal polymorphic restriction endonuclease recognition sequences, have been used to look for somatic genetic events that might occur during tumorigenesis. A comparison of constitutional and tumour genotypes from several cases indicates that tumorigenesis may result from the development of homozygosity for the mutant allele at the Rb-1 locus. The homozygosity in these cases results from mitotic nondisjunction, resulting in loss of the homologous wild-type chromosome, or from a mitotic recombination event.  相似文献   

4.
Evidence that recessive cellular alleles at specific chromosomal loci are involved in tumorigenesis has been recently shown by work on tissues from patients with retinoblastoma, a neoplasm of embryonic retina whose predisposition is inherited as an autosomal dominant trait. A comparison of germ-line and tumour genotypes at loci on human chromosome 13, defined by restriction fragment length polymorphisms, showed that loss of the chromosome bearing the wild-type allele at the Rb-1 locus occurred frequently in the development of retinoblastoma. We report here results of similar studies of another embryonal neoplasm, Wilms' tumour of the kidney. Examination of germ-line and tumour genotypes from seven patients showed that five cases were consistent with the presence on human chromosome 11 of a locus in which recessive mutational events are expressed after abnormal chromosomal segregation events during mitosis.  相似文献   

5.
Identification of an altered splice site in Ashkenazi Tay-Sachs disease   总被引:32,自引:0,他引:32  
Tay-Sachs disease is an autosomal recessive genetic disorder resulting from mutation of the HEXA gene encoding the alpha-subunit of the lysosomal enzyme, beta-N-acetylhexosaminidase A (ref. 1). A relatively high frequency of carriers (1/27) of a lethal, infantile form of the disease is found in the Ashkenazi Jewish population, but it is not yet evident whether this has resulted from a founder effect and random genetic drift or from a selective advantage of heterozygotes. We have identified a single-base mutation in a cloned fragment of the HEXA gene from an Ashkenazi Jewish patient. This change, the substitution of a C for G in the first nucleotide of intron 12 is expected to result in defective splicing of the messenger RNA. A test for the mutant allele based on amplification of DNA by the 'polymerase chain rection and cleavage of a DdeI restriction site generated by the mutation revealed that this case and two other cases of the Ashkenazi, infantile form of Tay-Sachs disease are heterozygous for two different mutations. The occurrence of multiple mutant alleles warrants further examination of the selective advantage hypothesis.  相似文献   

6.
We have created an insertional mutation that leads to a severe defect in the pattern of limb formation in the developing mouse. The novel recessive mutation is phenotypically identical and non-complementary to two previously encountered limb deformity mutations, and is closely linked to a dominant mutation that gives rise to a related limb dysmorphism. The inserted element thus provides a molecular genetic link with the control of pattern formation in the mammalian embryo.  相似文献   

7.
Keightley PD  Otto SP 《Nature》2006,443(7107):89-92
Sex and recombination are widespread, but explaining these phenomena has been one of the most difficult problems in evolutionary biology. Recombination is advantageous when different individuals in a population carry different advantageous alleles. By bringing together advantageous alleles onto the same chromosome, recombination speeds up the process of adaptation and opposes the fixation of harmful mutations by means of Muller's ratchet. Nevertheless, adaptive substitutions favour sex and recombination only if the rate of adaptive mutation is high, and Muller's ratchet operates only in small or asexual populations. Here, by tracking the fate of modifier alleles that alter the frequency of sex and recombination, we show that background selection against deleterious mutant alleles provides a stochastic advantage to sex and recombination that increases with population size. The advantage arises because, with low levels of recombination, selection at other loci severely reduces the effective population size and genetic variance in fitness at a focal locus (the Hill-Robertson effect), making a population less able to respond to selection and to rid itself of deleterious mutations. Sex and recombination reveal the hidden genetic variance in fitness by combining chromosomes of intermediate fitness to create chromosomes that are relatively free of (or are loaded with) deleterious mutations. This increase in genetic variance within finite populations improves the response to selection and generates a substantial advantage to sex and recombination that is fairly insensitive to the form of epistatic interactions between deleterious alleles. The mechanism supported by our results offers a robust and broadly applicable explanation for the evolutionary advantage of recombination and can explain the spread of costly sex.  相似文献   

8.
Effects of a change in the level of inbreeding on the genetic load   总被引:10,自引:0,他引:10  
S C Barrett  D Charlesworth 《Nature》1991,352(6335):522-524
"The effects of inbreeding may not be as noticeable in the first generation as the invigoration immediately apparent after crossing". This statement, published in 1919, has received little attention, and has apparently never been tested empirically, although the reduction of the genetic load of populations by inbreeding is well known in theoretical terms. Because inbreeding increases homozygosity, and hence the effectiveness of selection against recessive or partially recessive detrimental alleles, changes in levels of inbreeding can lead to a reduction in the frequencies of such mutant alleles. This results in equilibration at higher population mean fitness and is referred to as 'purging' populations of their genetic load. Severe inbreeding can also reduce genetic load due to overdominant alleles, provided selection coefficients are not symmetrical at all loci, because alleles giving lower fitness will be reduced in frequency at equilibrium. With either fitness model, however, reduction in genetic load takes time, and the initial effect of an increase in inbreeding is reduced fitness due to homozygosity. There are few data relating to the extent to which fitness is reduced during inbreeding in a set of lines and to how long the reduction lasts before increasing again to the initial level, or higher. Inbreeding experiments involving sib mating in mice and Drosophila subobscura, and successive bottlenecks in house flies have yielded some evidence consistent with the purging hypothesis. Here, we report results of an experiment demonstrating a prolonged time-course of recovery of mean fitness under self-fertilization of a naturally outcrossing plant, and also compare our results with expectations derived by computer calculations. Our results show that the genetic load present in an outcrossing population can be explained only with a high mutation rate to partially recessive deleterious alleles, and that inbreeding purges the population of mutant alleles.  相似文献   

9.
Guo G  Wang W  Bradley A 《Nature》2004,429(6994):891-895
Phenotype-driven recessive genetic screens in diploid organisms require a strategy to render the mutation homozygous. Although homozygous mutant mice can be generated by breeding, a reliable method to make homozygous mutations in cultured cells has not been available, limiting recessive screens in culture. Cultured embryonic stem (ES) cells provide access to all of the genes required to elaborate the fundamental components and physiological systems of a mammalian cell. Here we have exploited the high rate of mitotic recombination in Bloom's syndrome protein (Blm)-deficient ES cells to generate a genome-wide library of homozygous mutant cells from heterozygous mutations induced with a revertible gene trap retrovirus. We have screened this library for cells with defects in DNA mismatch repair (MMR), a system that detects and repairs base-base mismatches. We demonstrate the recovery of cells with homozygous mutations in known and novel MMR genes. We identified Dnmt1(ref. 5) as a novel MMR gene and confirmed that Dnmt1-deficient ES cells exhibit micro-satellite instability, providing a mechanistic explanation for the role of Dnmt1 in cancer. The combination of insertional mutagenesis in Blm-deficient ES cells establishes a new approach for phenotype-based recessive genetic screens in ES cells.  相似文献   

10.
Hereditary spherocytosis (HS) is one of the most common hereditary haemolytic anaemias. HS red cells from both autosound dominant and recessive variants are spectrin-deficient, which correlates with the severity of the disease. Some patients with recessive HS have a mutation in the spectrin alpha-2 domain (S.L.M. et al., unpublished observations), and a few dominant HS patients have an unstable beta-spectrin that is easily oxidized, which damages the protein 4.1 binding site and weakens spectrin-actin interactions. In most patients, however, the cause of spectrin deficiency is unknown. The alpha- and beta-spectrin loci are on chromosomes 1 and 14 respectively. The only other genetic locus for HS is SPH2, on the short arm of chromosome 8 (8p11). This does not correspond to any of the known loci of genes for red cell membrane proteins including protein 4.1 (1p36.2-p34), the anion exchange protein (AE1, band 3; 17q21-qter), glycophorin C (2q14-q21), and beta-actin (7pter-q22). Human erythrocyte ankyrin, which links beta-spectrin to the anion exchange protein, has recently been cloned. We now show that the ankyrin gene maps to chromosome 8p11.2, and that one copy is missing from DNA of two unrelated children with severe HS and heterozygous deletions of chromosome 8 (del(8)(p11-p21.1)). Affected red cells are also ankyrin-deficient. The data suggest that defects or deficiency or ankyrin are responsible for HS at the SPH2 locus.  相似文献   

11.
Defects in mismatch repair promote telomerase-independent proliferation   总被引:11,自引:0,他引:11  
Rizki A  Lundblad V 《Nature》2001,411(6838):713-716
Mismatch repair has a central role in maintaining genomic stability by repairing DNA replication errors and inhibiting recombination between non-identical (homeologous) sequences. Defects in mismatch repair have been linked to certain human cancers, including hereditary non-polyposis colorectal cancer (HNPCC) and sporadic tumours. A crucial requirement for tumour cell proliferation is the maintenance of telomere length, and most tumours achieve this by reactivating telomerase. In both yeast and human cells, however, telomerase-independent telomere maintenance can occur as a result of recombination-dependent exchanges between often imperfectly matched telomeric sequences. Here we show that loss of mismatch-repair function promotes cellular proliferation in the absence of telomerase. Defects in mismatch repair, including mutations that correspond to the same amino-acid changes recovered from HNPCC tumours, enhance telomerase-independent survival in both Saccharomyces cerevisiae and a related budding yeast with a degree of telomere sequence homology that is similar to human telomeres. These results indicate that enhanced telomeric recombination in human cells with mismatch-repair defects may contribute to cell immortalization and hence tumorigenesis.  相似文献   

12.
Spontaneous shuffling of domains between introns of phage T4   总被引:2,自引:0,他引:2  
M Bryk  M Belfort 《Nature》1990,346(6282):394-396
The three self-splicing introns in phage T4 (in the td, sunY and nrdB genes) (Fig. 1a) each have the conserved group I catalytic RNA core structure (Fig. 1b), out of which is looped an open reading frame. Although the core sequences are very similar (approximately 60% identity), the open reading frames seem to be unrelated. Single crossover recombination events between homologous core sequences in the closely linked td and nrdB introns have led to 'exon shuffling. Here we describe spontaneous double crossovers between the unlinked td and sun Y introns that result in shuffling of an intron structure element, P7.1 (refs 3 and 4). The intron domain-switch variants were isolated as genetic suppressors of a splicing-defective P7.1 deletion in the td intron. This unprecedented example of suppression through inter-intron sequence substitution indicates that the introns are in a state of genetic flux and implies the functional interchangeability of the two analogous but nonidentical P7.1 elements. The implications of such recombination events are discussed in the light of the evolution of the introns themselves as well as that of their host genomes.  相似文献   

13.
Three independent pseudoautosomal loci are linked to sex determination at frequencies which define a gradient of linkage. The segregation patterns of these loci indicate that X/Y recombination results from a single obligatory meiotic crossing-over in the pseudoautosomal region. Recombination in male germ cells in the terminal regions of the short arms of the X and Y chromosomes in 10-fold greater than between the same regions of the X chromosomes in female germ cells.  相似文献   

14.
D J Rees  C R Rizza  G G Brownlee 《Nature》1985,316(6029):643-645
Haemophilia B (Christmas disease) is an inherited, recessive, sex-linked, haemorrhagic condition caused by a defect in the intrinsic clotting factor IX. This disease occurs in males at a frequency of approximately 1 in 30,000. Patients differ in the severity of their clinical symptoms, and variation in the clotting activity and in the concentration of factor IX antigen in their plasma has been demonstrated. There is probably heterogeneity in the molecular defects of the factor IX gene causing the disease. Here we study a severely affected, antigen-negative patient, and show that the only significant sequence difference from the normal factor IX gene is a point mutation changing the obligatory GT to a TT within the donor splice junction of exon f. We infer that this change is the cause of the disease in this individual. In addition, we have used oligodeoxynucleotide probes specific for this mutation to demonstrate the feasibility of carrier detection and prenatal diagnosis for relatives of the patient.  相似文献   

15.
Spontaneous mutations are the source of genetic variation required for evolutionary change, and are therefore important for many aspects of evolutionary biology. For example, the divergence between taxa at neutrally evolving sites in the genome is proportional to the per nucleotide mutation rate, u (ref. 1), and this can be used to date speciation events by assuming a molecular clock. The overall rate of occurrence of deleterious mutations in the genome each generation (U) appears in theories of nucleotide divergence and polymorphism, the evolution of sex and recombination, and the evolutionary consequences of inbreeding. However, estimates of U based on changes in allozymes or DNA sequences and fitness traits are discordant. Here we directly estimate u in Drosophila melanogaster by scanning 20 million bases of DNA from three sets of mutation accumulation lines by using denaturing high-performance liquid chromatography. From 37 mutation events that we detected, we obtained a mean estimate for u of 8.4 x 10(-9) per generation. Moreover, we detected significant heterogeneity in u among the three mutation-accumulation-line genotypes. By multiplying u by an estimate of the fraction of mutations that are deleterious in natural populations of Drosophila, we estimate that U is 1.2 per diploid genome. This high rate suggests that selection against deleterious mutations may have a key role in explaining patterns of genetic variation in the genome, and help to maintain recombination and sexual reproduction.  相似文献   

16.
Sex chromosomes have evolved independently in several different groups of organisms, but they share common features, including genetic degeneration of the Y chromosome. Suppression of recombination between ancestral proto-X and proto-Y chromosomes is thought to have led to their gradual divergence, and to degeneration of the Y chromosome, but the evolutionary forces responsible are unknown. In non-recombining Y chromosomes, deleterious mutations may be carried to fixation by linked advantageous mutations ("selective sweeps"). Occurrence of deleterious mutations may drive "Muller's ratchet" (stochastic loss of chromosomes with the fewest mutations). Selective elimination of deleterious mutations, causing "background selection" may accelerate stochastic fixation of mildly detrimental mutations. All these processes lower effective population sizes, and therefore reduce variability of genes in evolving Y chromosomes. We have studied DNA diversity and divergence in a recently described X- and Y-linked gene pair (SLX-1 and SLY-1) of the plant Silene latifolia to obtain evidence about the early stages of Y degeneration. Here we show that DNA polymorphism in SLY-1 is 20-fold lower than in SLX-1, but the pattern of polymorphism does not suggest a selective sweep.  相似文献   

17.
H te Riele  E R Maandag  A Clarke  M Hooper  A Berns 《Nature》1990,348(6302):649-651
Specific genes can be inactivated or mutated in the mouse germ line. The phenotypic consequences of the mutation can provide pivotal information on the function of the gene in development and maintenance of the mammalian organism. The procedure entails homologous recombination in embryonic stem cells, which, on fusion to recipient blastocysts, give rise to chimaeric mice that can transmit the mutant gene to their offspring. Inbreeding can then yield mice carrying the mutation in both alleles allowing the phenotypic analysis of recessive mutations. In addition to mice lacking a particular gene function, cell lines carrying null alleles of normally expressed genes can be instrumental in assessing the function of the gene. These cell lines can either be obtained from homozygous animals or, should the mutation be lethal early in embryonic development, be generated by consecutive inactivation of both alleles by homologous recombination in cultured cells. Here we illustrate the feasibility of this latter approach by the efficient consecutive inactivation of both alleles of the pim-1 proto-oncogene in embryonic stem cells.  相似文献   

18.
Localization of cystic fibrosis locus to human chromosome 7cen-q22   总被引:5,自引:0,他引:5  
Cystic fibrosis (CF) is the most common genetic disease in Caucasian populations, with an incidence of 1 in 2,000 live births in the United Kingdom, and a carrier frequency of approximately 1 in 20. The biochemical basis of the disease is not known, although membrane transport phenomena associated with CF have been described recently. Consanguinity studies have shown that the inheritance of CF is consistent with it being a recessive defect caused by a mutation at a single autosomal locus. Eiberg et al. have reported a genetic linkage between the CF locus and a polymorphic locus controlling activity of the serum aryl esterase paraoxonase (PON). The chromosomal location of PON, however, is not known. Linkage to a DNA probe, DOCR1-917, was also recently found at a genetic distance of approximately 15 centimorgans (L.-C. Tsui and H. Donnis-Keller, personal communication), but no chromosomal localization was given. Here we report tight linkage between the CF locus and an anonymous DNA probe, pJ3.11, which has been assigned to chromosome 7cen-q22.  相似文献   

19.
R Heilig  C Lemaire  J L Mandel  L Dandolo  L Amar  P Avner 《Nature》1987,328(6126):168-170
Recent progress has resulted in part of the gene mutated in Duchenne and the milder Becker muscular dystrophies being cloned and has suggested that the gene itself extends over 1,000 to 2,000 kilobases (kb). To study how mutations in this gene affect muscle development and integrity, it would be of interest to have available a mouse model of the human disease. The mouse mdx mutation affects muscle and confers a mild dystrophic syndrome, but it is not clear whether this mutation is equivalent to Duchenne/Becker muscular dystrophy in man. Here we describe the use of two sequences from the human Duchenne muscular dystrophy (DMD) gene that cross-hybridize to mouse X-linked sequences to localize the gene homologous to DMD in the mouse. Both sequences map to the region of 10 centimorgan lying between the Tabby (Ta) and St14-1 (DxPas8) loci, close to the phosphorylase b kinase locus (Phk). By analogy with the human X-chromosome, we conclude that the region in the mouse around the G6pd and St14-1 loci may contain two genes corresponding to distinct human myopathies: Emery Dreifuss muscular dystrophy which is known to be closely linked to St14-1 in man and the DMD homologue described here.  相似文献   

20.
A frame-shift mutation in the cystic fibrosis gene.   总被引:22,自引:0,他引:22  
M B White  J Amos  J M Hsu  B Gerrard  P Finn  M Dean 《Nature》1990,344(6267):665-667
Cystic fibrosis (CF) is a common recessive lethal genetic disorder, affecting 1 in 1,600 Caucasians. The disease causes defective regulation of chloride-ion transport in exocrine cells. Although in all CF families the disease is linked to a locus on chromosome 7q31, there is clinical heterogeneity in the severity of the disease and the age at which it is diagnosed. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. A three-nucleotide deletion (delta F508) causing the loss of a phenylalanine residue in the tenth exon of the CFTR gene has been found on 70% of CF chromosomes. We have now characterized a CF family in which neither parent of the affected individual carries the common mutation, and identified a two-nucleotide insertion in the CF allele of the mother. The mutation introduces a termination codon in exon 13 of the CFTR gene at residue 821, and is predicted to result in the production of a severely truncated nonfunctional protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号