首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
热障涂层作为一种耐高温、耐腐蚀的热防护陶瓷材料,被广泛应用于航空发动机的高温部件,改善了发动机的耐高温性能且延长了其服役寿命.在高温服役环境中,由于界面氧化导致的TGO生长是诱发涂层剥落失效的主要原因.剥落失效是制约热障涂层在高性能航空发动机上安全应用的重要瓶颈,因此准确预测高温下热障涂层TGO的生长规律及微观形貌的演变规律对理解热障涂层界面氧化剥落失效至关重要.基于此,该文开展了不同制备工艺热障涂层材料的高温氧化实验,来分析TGO的生长规律以及微观形貌演变规律.实验结果表明:NiCrAlYSi黏结层氧化速率最快,抗氧化性能最差,TGO的生长不规则,氧化后期容易剥落.NiCrAl合金样品在高温下的氧化速率较慢,TGO的生长缓慢,抗氧化性能较好.Pt扩散黏结层的氧化速率介于两者之间,TGO的生长速率缓慢.在分析合金材料氧化的过程中,发现样品表面的粗糙度对TGO的生长有较大的影响,表面粗糙度越小TGO的生长速率越快,与基底的结合性越好.  相似文献   

2.
提高涡轮发动机进口温度是提升航空发动机推重比和热效率的主要手段,但当今先进航空发动机的进口温度已经远远超过了现有涡轮叶片材料的极限温度,发展冷却技术和热障涂层技术成为解决这一问题的关键.在热失配应力下热障涂层界面易出现裂纹的萌生和扩展,会直接导致热障涂层的失效,进而威胁到整个发动机的性能,因此,模拟热障涂层真实服役环境下的温度场和应力场分布,对于预测热障涂层的隔热效率和剥落位置极其重要.该文基于流固耦合的方法,运用商业软件ANASYS CFX模拟了带TBCs的三维涡轮叶片的温度场,并进一步计算了热障涂层的热应力.结果发现热障涂层在叶片前缘和压力面区域有更好的隔热性能,热障涂层在叶根和气膜孔处有更大的应力,是热障涂层剥落的危险区域.  相似文献   

3.
在制备热障涂层过程中系统内残余应力场预测   总被引:2,自引:1,他引:2  
在热障涂层系统制备工艺冷却过程中,各层材料参数不匹配(如弹性模量、泊松比、热膨胀系数、热传导参数等)将导致其体内各层材料冷却速率不一样,同时在各层界面上热障涂层系统为了保持应变协凋和位移连续,最终在冷却后热障涂层系统各层内均存在热残余应力.通过建立相应的理沦模型得到了热障涂层系统各层热残余应力的解析解表达式.通过计算分析,得到了冷却方式和陶瓷喷涂厚度对各层残余应力的影响.最终希望得到一组最优化工艺参数来指导热障涂层制备工艺和生产.  相似文献   

4.
建立了热障涂层在不同氧化阶段的等效电路,确立了等效电路中各元件参数与阻抗表征值之间的关系,确定了各元件的参数值,以达到对热障涂层微观结构以及TGO(其界面氧化物称为热生成氧化物(TGO))生长过程的检测.运用EQU软件模拟发现,等效电路阻抗谱与实测阻抗谱有很好的一致性,同时等效电路中参数值的计算与模拟的结果符合得很好.  相似文献   

5.
采用有限元软件ABAQUS建立了非齐边三层平板结构热障涂层模型,并模拟了在制备过程中其残余应力的分布情况,主要讨论了沉积温度、陶瓷层厚度对其残余应力场分布的影响.计算表明:沉积温度越高,陶瓷层厚度越厚,容易造成陶瓷层端部应力分布不均匀区域变大,同时对基底应力场不均匀分布影响区域也越深;在不同的陶瓷层厚度和沉积温度条件下,陶瓷层和过渡层均处于压应力状态,其数值分别在-50 ~ -300 MPa和-30~-140 MPa范围内,而基底则处于拉应力状态,其值变化在5 ~ 55 MPa范围内;陶瓷层与过度层界面剪切残余应力呈双曲正弦分布,且在界面中间剪切残余应力的值接近于零.这些模拟结果将进一步完善解析解所预测的残余应力场分布情况,为后期采用拉伸法研究热障涂层系统界面结合性能时提供重要的应力分析基础.  相似文献   

6.
孤立厚涂层通常被用来测试涂层的热物理性能,如热膨胀系数、热扩散系数、比热容等.不同形状的孤立厚陶瓷涂层通常通过在不同形状的石墨模具上采用等离子体喷涂增材制造的方法制备.采用有限元“生死单元”模拟技术对3D打印增材制造过程中的纳米结构YSZ热障涂层的残余应力进行了有限元模拟.考虑了方形、圆柱形、六棱柱及星柱形四种结构的石墨模具,系统计算并比较了四种石墨模具制备的厚涂层的应力分布特征.研究结果表明:在厚涂层的侧面存在较大的压应力集中,最大压应力往往分布在柱的边角或边缘处.对于热喷涂3D打印圆柱状厚涂层,压应力连续分布在厚涂层侧面的环形面上.对于四种类型的厚涂层,热喷涂3D打印圆柱状厚涂层在x,y,z三个方向上最大压应力值最小,分别为-19.574 MPa,-19.565 MPa和 -56.569 MPa.且x,y,z三个方向上应力梯度变化最小(分别为0.169 MPa/mm,0.173 MPa/mm,0.0218×10-3 MPa/mm),而星柱型厚涂层x,y,z三个方向上应力变化梯度最大(分别为2.344 MPa/mm,14.092 MPa/mm,2.171 MPa/mm).涂层的应力随着涂层厚度的增大而增大,且纳米结构涂层的应力低于传统结构涂层的应力.通过应力状态及应力大小的调控,将会促进YSZ涂层的铁弹性相变,进一步提高涂层的断裂韧性,从而有望进一步提高涂层的抗热震性能.  相似文献   

7.
采用悬浮液等离子体喷涂(SPS)工艺在以GH3128高温合金为基底,CoNiCrAlY为黏结层的表面上制备氧化钇部分稳定的氧化锆(YSZ)厚热障涂层(TTBCs),研究单片层的形貌特征及单片层之间的堆叠行为对涂层微结构的影响.对无支撑的YSZ涂层进行了1 200~1 600 ℃保温24 h和1 550 ℃保温20~100 h的高温时效处理,分析涂层的物相组成和晶粒尺寸等的变化;对涂层试样进行了高温燃气焰流循环热考核,并对其失效机理进行了探讨.结果表明,SPS单片层由四方相晶粒组成.涂层经1 550 ℃高温热处理40 h发生四方相(t)向单斜相(m)转变,且m相的含量随热处理时间的延长而增加,但对于24 h高温处理样品,即便将热处理温度提升到1 600 ℃,也未见t→m相变.SPS涂层经热考核前后应力演变是其失效根源,通过相邻柱状晶的脱落可有效地释放陶瓷层中的应力集中,最终与界面附近陶瓷层微裂纹相互连接而导致涂层剥落.  相似文献   

8.
热障涂层是目前保护航空发动机内部热端部件、提高其热效率最常用的方法和发动机必备的关键技术之一.航空发动机热障涂层服役环境极其严苛,其剥落失效面临巨大瓶颈,研制热障涂层服役环境模拟装置是理解热障涂层机制的重点.该文基于航空发动机热障涂层热、力、化多场耦合等实际服役环境,探讨有关热障涂层工况模拟试验用涡轮模型的设计.该模型是热障涂层工况模拟装置的核心模块之一.主要内容如下:(1)基于动力学平衡原理,结合发动机两类叶片数量之比等比例设计导向、工作叶片热障涂层的数量和位置;(2)基于高温燃气与高速旋转交互作用后尾迹、湍流的位置设计导向叶片与工作叶片之间的夹角;(3)基于涡轮叶片高速旋转线速度来设计模型件关键部件,包括导向叶片、工作叶片、涡轮盘的尺寸;(4)基于不同试验目标与测试要求选用不同类型的涡轮模型,第一类模型适用于工作叶片热障涂层的模拟考核与导向叶片热障涂层检测,第二类模型适用于工作叶片热障涂层的检测与机制研究.  相似文献   

9.
应力集中严重影响开孔构件的承载能力和使用寿命。由此,本文对四周均布剪力作用下含圆孔无限大矩形薄板的力学性能进行理论研究,得到应力的解析解,并基于理论研究结果对孔口应力集中情况进行讨论。  相似文献   

10.
扭转载荷下缺口参数对圆轴应力分布的影响   总被引:1,自引:1,他引:0  
讨论缺口几何参数对应力集中水平的影响.利用有限元软件ANSYS,建立扭转载荷下缺口轴的力学模型,计算缺口根部附近的局部应力应变,分析缺口几何参数对轴应力集中的影响.结果表明:缺口根部附近存在一很小区域,该区域的应力同缺口半径、缺口深度和张开角有关,在这个区域内,应力有统一的特性.  相似文献   

11.
热障涂层与高温合金、气膜冷却技术并称为航空发动机涡轮叶片的三大关键技术.等离子喷涂 物理气相沉积(PS PVD)工艺是最具潜力的未来航空发动机热障涂层制备方法之一,其制备的羽 柱状结构热障涂层兼具APS和EB PVD热障涂层的优点.为了进一步提高热障涂层性能,需要开发与PS PVD工艺相匹配的新型YSZ粉末.该文先采用喷雾干燥法制备出3种不同纳米团聚YSZ粉末,再使用相同PS PVD工艺制备成涂层,最后对粉末特性和涂层性能进行评价,以研究制粉工艺 粉末特性 涂层性能之间的联系.实验结果表明:悬浮液固含量越高,制备出的粉末呈现球形越规则,粒径也越大,喷涂的气化率和沉积率越高;制备的YSZ涂层由致密初始生长层和羽 柱状结构两部分构成;使用固含量45%的悬浮液制备的粉末喷涂所获得的涂层具有良好的结合强度和抗热震性能.  相似文献   

12.
燃气轮机高温部件的气膜冷却是保障发动机安全运行的重要途径.在等离子喷涂过程中,涂层沉积会堵塞气膜孔,降低冷却效果.气膜孔的边缘是涂层应力最集中的地方,也是涂层脱落的发源地.金属黏结层材料NiCrAlY熔点低、延展性好,首先在孔边缘沉积,向孔中心收缩,形成喉部,是堵孔的主要来源;陶瓷涂层材料YSZ熔点高、延展性差,对堵孔的贡献相对较小.为了降低涂层沉积对气膜孔的堵塞作用,该文研究了3种方法:(1) 向气膜孔内部注入防粘胶,涂层制备结束后再将防粘胶清理出来;(2) 在制备涂层的过程中,从基体背部向气膜孔内通入压缩空气,阻止涂层在气膜孔边缘沉积;(3) 制备涂层后,用机械通孔的方法清理气膜孔边缘的涂层.这3种方法都能有效地降低涂层对气膜孔的堵孔率,但对涂层热循环寿命的影响有明显差异.气膜孔内通入适当流量的冷却气,有效降低了涂层在气膜孔边缘的沉积,提高了涂层的热循环寿命.机械通孔的方法使气膜孔边缘的涂层产生裂纹,涂层的热循环寿命明显降低.  相似文献   

13.
基于弹性热力学,建立了一个四层空心圆柱结构热障涂层系统的应力模型和解析解.在考虑了弹塑性变形和蠕变变形影响的条件下,分析了热循环次数、基底曲率半径和热循环温度对TBCs系统残余应力的影响.随着热循环次数的增加,TBCs系统内不匹配残余应力的差异不断加剧.氧化层内环向应力和轴向应力数值大约为-2.2 GPa,是其他三层相应应力的10倍,具有明显的应力奇异性.该特性必然加剧TBCs的界面裂纹扩展和涂层剥落.基底曲率半径越小,陶瓷表面服役温度越高,越容易造成TBCs系统内应力分布不均匀.  相似文献   

14.
燃气涡轮发动机是高性能航空发动机和重型燃气轮机的主要形式与发展趋势,是体现国家核心竞争力与科技水平的重要标志.热障涂层是提高航空发动机和重型燃气轮机服役温度最切实可行的办法,但热障涂层的应用与发展面临系列挑战,在我国尤为突出,如涂层过早剥落,性能不稳定,承温能力不足等.该文对先进热障涂层的强韧和破坏机制的标准规范研究进行了详细的评述.具体包括:锆钽系涂层有望成为下一代高性能热障涂层,基于铁弹增韧的应变梯度调控的涂层成分与结构设计,基于界面粗糙度与晶粒纳米化的尺度效应的强界面设计,先进热障涂层微结构与强韧及破坏的关联,热障涂层制备装备与跨尺度力学行为的表征技术,跨尺度力学性能与破坏表征的标准规范.最后提出了未来的重点研究方向.  相似文献   

15.
断裂现象始终是同材料与结构中的孔洞、缺口或裂纹相关联的,在材料的这种宏观不连续部分最明显的特点是应力分部极不均匀,从而导致应力集中。缺陷(孔洞、裂纹、位错等)和应力集中往往是造成结构破损的重要原因。利用复变函数方法,通过构造保角映射,研究了带双裂纹的椭圆孔口的反平面剪切问题,给出了Ⅲ型裂纹问题的应力强度因子,在极限情形下,不仅可以还原为已有的结果,而且求得带双裂纹的圆形孔口问题、十字纹问题在裂纹尖端处的Ⅲ型应力强度因子。  相似文献   

16.
为提高航空发动机性能,热障涂层被广泛地用于涡轮叶片上.涂层在高温下服役时,会发生烧结,使涂层变得更加致密,从而不可避免地增加了热障涂层的弹性模量和热导系数,强烈地影响了涂层的耐用性、效率和性能.该文针对等离子喷涂制备的热障涂层,建立了涂层的二维真实微结构有限元模型,并运用相场模型研究了在1 400℃烧结条件下涂层微结构随时间演化的动态规律.计算结果表明:在烧结初期,涂层中微裂纹在最窄处迅速愈合,并开始形成不连续的单个小孔隙.烧结中期,前期由微裂纹产生的孔隙不断愈合,或者与相邻孔隙合并.烧结后期,涂层前期微裂纹大都形成了球形,孔隙间相对距离大,较小孔隙主要是以愈合的方式消失,涂层孔隙率随烧结时间的增加先迅速下降后趋于平稳.模拟的结果与实验结果相吻合.  相似文献   

17.
热障涂层是决定未来航空发动机与燃气轮机发展水平的核心技术.涂层剥落失效是热障涂层,尤其是我国热障涂层应用与发展所急需解决的关键问题.服役环境试验模拟装置是解决热障涂层剥落失效问题的必然措施.该文从静态试验模拟装置、动态试验模拟装置两个方面对试验模拟装置的国内外研究现状和发展趋势进行了详细的评述.最后,对航空发动机涡轮叶片热障涂层模拟试验装置的关键科学和技术问题进行了展望.  相似文献   

18.
对热障涂层组合筒进行了热弹塑性极限分析,导出了热弹塑性应力分布的计算式,分别就基体内层开始进入塑性及整个基体完全处于塑性两类极限状态下,得到了极限温差,并就ZrO2/Ti-6Al/4V陶瓷热障涂层给出了计算结果,为热弹涂层材料设计时参数的优化奠定了理论基础。  相似文献   

19.
焊接结构疲劳强度预测的局部法研究   总被引:1,自引:0,他引:1  
以焊缝附近局部半圆区域的平均应力为控制参数,得到焊接结构疲劳切口系数的计算理论,在考虑材料、结构几何形式、残余应力等因素对疲劳强度影响的基础上,建立了对称循环和非对称循环时焊接结构有效应力集中系数预测的局部法模型.通过对几类错位板接头的有限元计算分析,得到这些焊接结构焊缝附近局部区域的应力场,进而预测它们的疲劳强度,并将预测结果与疲劳试验进行了比较,获得了令人满意的结果.用局部法预估焊接结构的疲劳强度,能大量减少疲劳实验,节省经费开支,对工程应用有参考价值  相似文献   

20.
对热障涂层组合筒进行了热弹塑性极限分析,导出了热弹塑性应力分布的计算式,分别就基体内层开始进入塑性及整个基体完全处于塑性两类极限状态下,得到了极限温差,并就 Zr O2 Ti - 6 Al- 4 V 陶瓷热障涂层给出了计算结果,为热障涂层材料设计时参数的优化奠定了理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号