首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
介绍了高速漏磁检测中速度效应的基本原理,研究了高速下漏磁信号的变化规律及对不同缺陷长度与深度的影响。  相似文献   

2.
为检测斜拉桥重要承载构件——钢绞线拉索锈蚀状况,引入金属磁记忆技术,结合缺陷漏磁信号检测磁偶极子模型,建立了钢绞线锈蚀缺陷漏磁模型,并开展钢绞线试件锈蚀缺陷漏磁信号有限元数值仿真模拟和试验验证.通过理论研究、仿真分析和试验验证,剖析了钢绞线锈蚀缺陷漏磁信号分布变化特征,构建了漏磁信号检测钢绞线锈蚀的判别准则.研究结果表...  相似文献   

3.
ANSYS在管道漏磁检测中的应用   总被引:1,自引:0,他引:1  
通过对管道漏磁检测技术和有限元分析软件ANSYS的介绍,得到了有限元分析软件ANSYS在管道漏磁检测中应用的具体事例,通过计算分析得出一系列管道缺陷的漏磁信号曲线,为实现管道缺陷的智能诊断打下了基础。  相似文献   

4.
文章以废旧磷酸铁锂电池为研究对象,提出利用涡流分选的方法分离回收废旧磷酸铁锂电池中的铜、铝与正极材料磷酸铁锂。使用COMSOL Multiphysics多物理场耦合分析软件对磁辊表面磁场强度分布进行模拟,并建立了涡流分选的力学模型;分析了磁场强度、颗粒半径、磁辊转速、进料速度等因素对涡流分选效果的影响;最后,设计涡流分选试验验证了模型的准确性,得到了影响废旧磷酸铁锂电池破碎产物涡流分选效果的可控制因素与其他干扰性因素。模拟与试验结果表明,在2~15mm范围内,分选效果与破碎材料直径为正相关关系,当磁辊转速为600~800r/min时分选达到最大效果,而进料速度对分选结果影响不明显。  相似文献   

5.
在对带保温层管道进行检测时,由于保温层的隔离作用使得传统的电磁无损检测方法感生的磁场在传播到管道表面时已衰减的非常微弱,因此,对带保温层管道中腐蚀缺陷的检测是无损检测领域的一个难点.脉冲漏磁方法由于结合了脉冲检测频率丰富以及漏磁检测适于铁磁性管道检测的优势,因而采用脉冲漏磁技术对管道腐蚀缺陷进行了检测.在分析了脉冲漏磁检测原理的基础上,仿真分析了4种不同结构的脉冲漏磁传感器沿管道表面和管壁的磁场分布以及对不同厚度保温层的检测能力,仿真结果表明带聚磁板的模型具有较好的检测能力.最后,采用实验的方法研究了这种模型传感器对腐蚀缺陷深度的定量能力,实验结果表明该传感器可以很好地实现对腐蚀缺陷深度的定量检测.  相似文献   

6.
根据涡流、漏磁以及磁记忆检测的特点,基于巨磁阻元件开发了涡流/磁一体化阵列传感器,将电磁无损检测中动态、静态电磁场的测量统一起来,按照检测要求进行常规涡流、脉冲涡流、任意波激励涡流、漏磁以及磁记忆等检测方式。通过分组引线降低了传感器的布线难度,具有较高的扫描检测速度衍4用串行通信将传感器中存储于Flash芯片内的各项参数传输到主机,进行各种补偿和设置,提高传感器的性能。该传感器具有应用范围宽、测量范围大、体积小、稳定性好以及空间分辨率高等特点。  相似文献   

7.
根据实际的漏磁检测设备相关参数,建立有限元仿真模型,确定了励磁线圈的形状和工作参数,获得最佳的信噪比。提出了在励磁线圈外面增加辅助磁路的措施来消除检测时的端部效应。通过在Hall探头两侧表面加装导磁块的方法,提高了探头对缺陷漏磁信号的轴向分量的检测能力。仿真数据同实验结果基本吻合,研究成果已经用在钢管漏磁检测设备的开发生产中。   相似文献   

8.
受腐蚀因素影响,储罐易发生腐蚀泄漏,储罐罐壁腐蚀一直是无损检测的难点,本文开展罐壁腐蚀缺陷漏磁检测技术研究。在轴向磁化方式下,对储罐壁板缺陷进行漏磁检测时,受壁板直径影响,同一缺陷处不同检测通道的漏磁信号不同,分析各通道漏磁信号与储罐直径的关系,得出直径与各通道漏磁信号峰值的数学模型;在此基础上对各通道漏磁信号进行预处理,建立修正系数,以消除不同通道之间的漏磁信号差异,实现各通道信号均匀化。  相似文献   

9.
苗长青 《科学技术与工程》2012,12(35):9653-9656
漏磁检测方法由于其简便、快捷、结果准确等特点,在现在无损检测领域得到越来越广泛的应用。但是在现场检测过程中,由于提离值波动、铁磁性杂物等影响,使得漏磁检测量化结果会产生误差,甚至会产生误判。这对检测结果的准确性有很大的影响。本文研究了缺陷腐蚀产物与漏磁场之间的关系,利用有限元方法建立直径、深度相同腐蚀产物厚度不同的漏磁检测模型,通过计算得到不同腐蚀产物厚度模型漏磁场分布,对比分析结果表明:无腐蚀产物缺陷的漏磁场最明显,随着腐蚀产物厚度的增加,缺陷漏磁场变得越不明显。在实验室条件下进行了腐蚀产物影响实验,实验结果与有限元数值分析结果一致。  相似文献   

10.
针对脉冲涡流进行缺陷检测经常受到激励磁场和背景磁噪声干扰的问题,提出对缺陷处进行铁磁屏蔽的方法。在脉冲涡流检测中的磁屏蔽理论分析基础上,建立了脉冲涡流检测的有限元仿真模型。仿真表明:对于铁磁性构件,铁磁屏蔽能够使感应涡流尽可能地分布在缺陷附近,该措施减弱了检测信号的幅值,但对于不同深度的缺陷能够更好的辨别,能有效提高缺陷检测的灵敏度。根据有限元仿真结果,制作了铁磁性材料的磁屏蔽罩。实验表明:在铁板的表面,铁磁屏蔽能有效提高其检测信号灵敏度,而在铁板亚表面,灵敏度获得的提升较小。  相似文献   

11.
研究了漏磁无损检测中一种基于双极磁荷法的漏磁信号分析模型,运用这一分析模型研究了三种不同类型缺陷的径向和轴向漏磁信号.设计制作了实验装置与试样并进行了实验,将实验结果与分析模型的仿真结果进行了比较,两者得到了较好的吻合,说明了分析模型的有效性.这个模型建立了缺陷尺寸与漏磁信号的关系,具有参数少,计算快,分析方便等优点,它为漏磁信号处理和缺陷的识别评估提供了重要工具.  相似文献   

12.
针对铁磁材料的无损评估中,漏磁信号描述缺陷的几何特征难点,提出了应用支持向量机对二维缺陷重构的新方法,支持向量机输入是漏磁信号,输出是缺陷轮廓数据,建立了由缺陷的漏磁信号到缺陷二维轮廓的映射关系。网络学习采用最小二乘算法,训练样本由实验数据与仿真数据组成,测试样本为人工裂纹缺陷。该方法实现了人工裂纹缺陷的二维轮廓的重构,并与径向基神经网络重构结果进行了比较。试验结果表明,该方法具有速度快、精度高和很好的泛化能力,为漏磁检测定量化提供了一种可行的方法。  相似文献   

13.
脉冲涡流检测是现代无损检测技术的重要方法之一.由于其出众的检测能力,目前已广泛应用于金属测厚等领域.文章基于COMSOL软件,建立了脉冲涡流测厚系统,对4种不同厚度的磁性和非磁性材料试件进行了测厚仿真的分析研究,并对影响厚度特征判别的测量参数TC进行了优化,得到了优化后的仿真结果,得出了不同厚度材料检测信号的特点及特征判别的依据.  相似文献   

14.
地磁导航中的测量误差是影响地磁导航精度的关键因素,而包括涡流磁场在内的载体干扰磁场是产生误差的主要因素。目前各种运载体大量使用铁磁性材料,这样不可避免地会引起涡流磁场等干扰磁场。因此文中采用COMSOL Multiphysics仿真软件,建立了高速运动载体的涡流干扰场仿真模型。首先研究了永磁体与匀强磁场之间的关系,发现永磁体的剩磁越强,匀强场也越强,为模拟地磁场提供了理论依据。其次分析了载体在匀速转动时涡流磁场对地磁测量的影响,最后研究了载体摆动时的涡流场的分布。结果表明涡流磁场随着速度的增大而增强,且涡流磁场主要分布于载体中间位置。仿真结果为下一步地磁导航中的误差建模以及磁场校正技术的研究提供了理论依据。  相似文献   

15.
脉冲远场涡流检测中磁场抑制技术   总被引:1,自引:0,他引:1       下载免费PDF全文
脉冲远场涡流用于飞机机身金属结构中缺陷的检测时,由于信号微弱,检测灵敏度往往不高,因此,如何实现对远场涡流的磁场抑制与信号增强,从而改进和提高其检测能力是一个关键问题。从抑制远场涡流磁场直接耦合分量的角度出发,仿真设计了带有不同屏蔽结构的传感器模型,分析了不同材料的屏蔽效果,比较了不同模型的缺陷检测灵敏度以及对大厚度平板的检测能力。研究结果表明:基于高导磁材料屏蔽盘的连通磁路传感器对直接耦合分量具有较好的抑制作用,可以拉近激励与检测线圈间的距离,提高缺陷的检测灵敏度,其对非磁性平板的检测厚度可扩展至25mm。  相似文献   

16.
通过传感器结构的合理设计,脉冲远场涡流可用于飞机机身非磁性金属结构中缺陷的检测,但是,传统远场涡流信号微弱,检测灵敏度不高,因此,如何实现对远场涡流的磁场抑制与信号增强,从而改进和提高其检测能力是一个关键问题。本文从抑制远场涡流磁场直接耦合分量的角度出发,仿真设计了带有不同屏蔽结构的传感器模型,分析了不同材料的屏蔽效果,比较了不同模型的缺陷检测灵敏度以及对大厚度平板的检测能力。研究结果表明,基于高导磁材料屏蔽盘的连通磁路传感器对直接耦合分量具有较好的抑制作用,可以缩短过渡区,拉近激励与检测线圈间的距离,提高缺陷的检测灵敏度,其对非磁性平板的检测厚度可扩展至25mm。  相似文献   

17.
基于改进BP神经网络算法的管道缺陷漏磁信号识别   总被引:5,自引:1,他引:5  
海底管道漏磁检测信号处理的主要任务是根据霍尔传感器检测到的缺陷漏磁信号来识别缺陷的形态参数.根据漏磁检测原理设计了相关的漏磁检测电路,通过提取信号的主要特征量,利用Levenberg-Marquardt算法在对常用BP神经网络改进的基础上应用其来识别缺陷的尺寸参数,给出了BP神经网络各层数的确定及权值、学习率的调整方法和相应的漏磁信号数据处理过程.漏磁检测数据处理实验表明,该缺陷识别BP神经网络系统具有逼近精度高、收敛速度快等特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号