首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yao  TanDong  Zhou  Hang  Yang  XiaoXin 《科学通报(英文版)》2009,54(16):2724-2731
The δ^18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform (TORP) is studied, with the focus on the altitude effect of δ^18O in river water during monsoon precipitation in an effort to understand the monsoon influence on isotopic composition in annual river water. It is found that δ^18O in precipitation on the Plateau is influenced by different moisture sources, with significant Indian monsoon influence on δ^18O composition in plateau precipitation and river water. The δ^18O of water bodies in the monsoon domain is generally more depleted than that in the westerly domain, suggesting gradual rainout of southwesterly borne marine moisture in the course of long-distance transportation and lifting over the Himalayas. The lapse rate of δ^18O in river water with altitude is the largest during monsoon precipitation, due to the increased temperature vertical gradient over the southern Plateau region controlled by monsoon circulation. The combination of δ^18O in river water in monsoon (wet) and non-monsoon (dry) seasons shows a larger lapse rate than that in non-monsoon (dry) season alone. As the altitude effect of δ^18O in precipitation and river water on the Tibetan Plateau results from the combined effect of monsoon moisture supply and westerly moisture supply, the δ^18O composition and its altitude effect on the Plateau during monsoon seasons should be considered in the reconstruction of paleoelevation of the Tibetan Plateau.  相似文献   

2.
Gao  Jing  Tian  LiDe  Liu  YongQin  Gong  TongLiang 《科学通报(英文版)》2009,54(16):2758-2765
Given the potential use of stable isotope in the paleoclimate reconstruction from lacustrine records as well as in the local hydrology cycle, it is crucial to understand the processes of stable isotope evolution in catchment in the Tibetan Plateau region. Here we present a detailed study on the water oxygen isotope based on 2 years observation including precipitation, river water and lake water in the Yamzho Lake, south of the Tibetan Plateau. Temporal variation of local precipitation 5180 shows an apparent "monsoon cycle". In monsoon season, 5180 in waters is lower. In non-monsoon season, δ^18O in precipitation and lake water is higher and higher river δ^18O exists in spring, probably reflecting the effect of land surface evaporation, together with the higher δ^18O values in spring precipitation. It is also found that the surface lake water δ^18O varies seasonally and annually. The lower lake water δ^18O in the late summer is apparently related to the summer monsoon precipitation. The mean δ^18O value of lake water in 2007 is 1.2‰ higher than that in 2004, probably due to the less monsoon precipitation in summer of 2007, as can be confirmed from the precipitation data at the Langkazi meteorological data. It is also found that an obvious shift of vertical lake water δ^18O reflects the fast mixture of lake water. δ^18O values of lake water are over 10‰ higher than those of precipitation and river water in this region due to the evaporation fractionation. The modeled results show that the evaporation process of the lake water is sensitive to relative humidity, and the present lake water δ^18O reflects a relative humidity of 51% in the Yamzho Lake. It shows that the lake will take 30.5 years to reach present lake water δ^18O given a large shift in the input water δ^18O. The modeled results also reveal that surface lake water temperature and inflow δ^18O have slight effect on the isotopic balance process of lake water in the Yamzho Lake.  相似文献   

3.
Liu  Chuanlian  Cheng  Xinrong  Zhu  Youhua  Tian  Jun  Xia  Peifen 《科学通报(英文版)》2002,47(10):798-803
Oxygen and carbon isotopic analyses have been carried out on calcareous nannofossils from ODP Site 1143 in the southern South China Sea. The results demonstrate that the δ18O values of calcareous nannofossils for the past 1 Ma vary systematically with those of planktonic and benthic foraminifera from the same site. But the average δ18O value of nannofossils is 1.869‰ higher than that of planktonic foraminifera, and is 3.855‰ lower than that of benthic foarminifera. There are systematic differences between the δ13C values of nannofossils, planktonic foarminifera and benthic foraminifera. The average δ13C of nannofossils is 0.756‰ higher than that of benthic foraminifera, and is 0.460‰ lower than that of planktonic foraminifera. The δ13C values of nannofossils exhibit a significant positive shift beginning near isotope stage 14 and lasting until stage 8. This study also finds that there is a close ralationship between the δ13C of nannofossils and the percentage of Florisphaera profunda. This implies that the δ13C of nannofossils can be used as an indicator of sea water surface paleoproductivity.  相似文献   

4.
Previous studies found extremely high d-excess in both ice core and glacial melt water in Dasuopu glacier, Xixiabangma, middle of Himalayas. These values are much higher than the global average and those measured in southwest monsoon precipitation. The d-excess variation in over one year at Nyalam station will clarify this phenomenon. Studies show that the high d-excess is related to the seasonal variation of moisture transport to this region. The d-excess values are low during the southwest monsoon active periods, when moisture originated from the humid ocean surface. The d-excess values are higher in non-monsoon months, when moisture is derived from westerly transport. Winter and spring precipitation accounts for a substantial portion of the annual precipitation, resulting in higher d-excess in the yearly precipitation in the middle of Himalayas than other parts of the southern Tibetan Plateau. This finding reveals that the precipitation in the middle of Himalayas is not purely from southwest monsoon, but a large portion from the westerly transport, which is very important for ice core study in this area.  相似文献   

5.
According to systemically monitoring results of oxygen (hydrogen) isotope compositions of precipitation, soil waters, soil CO2, cave drip waters and their corresponding speleothems in Liangfeng Cave (LFC) in Guizhou Province, Southwest China, it is found that local precipitation is the main source of soil waters and drip waters, and that the amplitudes of those δ18O values of three waters (precipitation, soil water and drip water) decrease in turn in the observed year, which are 0‰ to -10‰, -2‰ to -9‰ and -6‰ to -8‰, respectively. Moreover, the δ18O values for three waters show a roughly simultaneous variation, namely, that those values are lighter in the rainy seasons, weightier in the dry seasons, and that the average δ18O value of drip waters is about 0.3‰ weightier than that of precipitation, which is modified by surface evaporation processes. We also find that oxygen isotope equilibrium is reached or neared in the formation processes of speleothems in LFC system, and that it is feasible to reconstruct paleotemperature and paleoprecipitation by using δ18O values of speleothems. However, it should be noted that surface evaporation would affect the oxygen isotope values in the study area.  相似文献   

6.
The strontium isotopic compositions (87Sr/86Sr) of samples including soils, bedrock, soil waters, drip waters and their corresponding speleothems in the Qixing Cave (QXC), Guizhou Province, China, were systemically measured and analyzed. The results indicate that there are significant Sr isotopic differences among samples. The mean 87Sr/86Sr ratios in drip water for the samples 1#, 4# and 9# were 0.709568, 0.709139 and 0.708761, respectively, which possibly result from different flow paths, residence times, and other hydrogeological processes in the unsaturated zone overlying QXC. Meanwhile, levels of 40.8%, 57.6% and 72.4% of Sr in drip waters for 1#, 4# and 9#, respectively, were derived from bedrock dissolution, which was calculated by the mixture model of the two end-members (soil and bedrock). There is, however, no positive correlation between the relative proportion from bedrock dissolution (δ13C value is 1.8‰) and drip water δ13CDIC values. The mean drip water δ13CDIC value in 1# is the heaviest (–4.5‰) with the lowest contribution rate of bedrock dissolution, whereas the value in 9# is the lightest (–9.3‰) with the highest contribution rate of bedrock dissolution. The proportion from host rock dissolution in 4# is higher than that in 1# and lower than that in 9#, while its mean drip water δ13CDIC value (–8.6‰) is higher than that of 9# and lower than that for 1#. This suggests that the prior calcite precipitation (PCP) processes in the unsaturated zone overlying the cave are responsible for the δ13CDIC value differences between different drip waters, and not bedrock dissolution. Furthermore, this study also demonstrates that the 87Sr/86Sr ratios of speleothems in the 1# and 4# mainly reflect the variation in the relative proportions from the soil system (soil water) and bedrock dissolution overlying the cave. It is, therefore, feasible to use the strontium isotopic signals of speleothems as an indicator for soil chemical weathering intensity, and consequently as a monsoon proxy in the study area.  相似文献   

7.
The occurrence of seep carbonates is one of the characteristic features for cold seep sites at continental margins.The carbonates documented the venting history of methane-rich fluid.Compared to the chemoherm carbonates and carbonate pavements which formed on the sediment-water interface,chimney-like seep carbonates precipitated around fluid conduits below the sediment-water interface therefore better recording information of the past fluid flow and composition.Here the chimney-like seep carbonate samples from the northeastern Dongsha area of the South China Sea were studied to understand the origin and nature of the venting fluids and their potential relationship with gas hydrate deposits underneath the seafloor.Based on the occurrence,morphology,petrology,mineralogy and C-and O-isotope compositions,combined with present and past bottom water temperatures and the timing of methane release events,the oxygen isotopic fractionation between calcite and water were used to estimate the equilibriumδ18O values of the precipitating fluids.Theδ13C values ranging from 56.33‰to 42.70‰V-PDB and thus clearly show that the studied chimneys were mainly derived from biogenic methane oxidation.The calculated equilibriumδ18O values of the precipitating fluids ranged from 1.9‰0.3‰to 0.6‰0.3‰V-SMOW,with an average of 1.4‰0.3‰V-SMOW which is heavier than those of seawater even at the last glacial maximum.It is considered that the formation of chimney-like carbonates was closely related to methane hydrate dissociation in the area.The methane hydrates contributed as much as45.7%of water to the venting fluids.It is suggested that the climate and environmental changes(e.g.sea-level lowering,down-cutting canyons and mass wasting)are the major mechanisms maybe responsible for the destabilization of methane hydrates in the study area.The extensive occurrence of seep carbonates indicates that a large amount of the methane released from methane hydrate dissociation has been effectively captured and sequestered by microbial anaerobic oxidation of methane(AOM)before it escapes into the water column.  相似文献   

8.
Yang  XiaoXin  Xu  BaiQing  Yang  Wei  Qu  DongMei  Lin  Ping-Nan 《科学通报(英文版)》2009,54(16):2742-2750
Seasonal δ^18O variation in water on the southeast Tibetan Plateau has been studied, showing the consistent variation pattern of δ^18O with altitude indicative of relevant atmospheric circulation processes. Study shows a similar variation pattern of fixed-site river water δ^18O with that of the precipitation δ^18O in southeast Tibet. δ^18O in regional rivers in southeast Tibet demonstrates a gradual depletion with increasing altitude, though the rates vary seasonally. The most depleted river ^18O occurs during the monsoon period, with the lowest δ^18O/altitude lapse rate. The river ^18O during the westerly period is also depleted, together with low δ^18O/altitude lapse rate. The pre-monsoon rivers witness the most enriched ^18O with least significant correlation coefficient with the linear regression, whilst the postmonsoon rivers witness the largest δ^18O/altitude lapse rate. Different coherence of seasonal δ^18O variation with the altitude effect is attributed to different moisture supplies. Though sampling numbers vary with seasons, the δ^18O-H linear correlation coefficients all reach the 0.05 confidence level, thus witnessing the variation features of δ^18O in seasonal river water due to the influence of atmospheric general circulation and land surface processes revealed from the altitudinal lapse rates.  相似文献   

9.
The content and hydrogen isotope ratios of n-alkanes extracted from recent lake surface sediments sampled from nine lakes in three different climate zones on the Southwestern Tibetan Plateau were analyzed. Values were compared with n-alkanes in plants from lake drain- ages, and δD values of meteoric water, lake water, and mean annual precipitation. The results showed that n-C23 was predominantly derived from aquatic plants, and n-C27- n-C33 from terrestrial higher plants. The average carbon chain length of n-C27-n-C33 (ACL27-33) was positively correlated with the mean annual precipitation. δD values of the long-chain n-alkanes n-C29 and n-C31 of terrestrial origin (varying between -214‰ and -169 ‰, and-226 ‰ and -185 ‰, respectively) were inversely correlated with mean annual precipitation; but in accordance with the average annual variations in δD (OIPC), δD values of n-C31 were strongly related to the δD values of growing season meteoric water (R2 = 0.74). The large difference between δD values of n-C23 of aquatic origin and n-C31 (an average of about 27 ‰) demonstrates the enrichment of the lake water δD compared to precipitation, caused by strong evaporation in the semiarid-arid areas of the southwestern Tibetan Plateau. Average value of εn-c25- 31/p (-95 ‰) is evidently higher than the value observed in European wet regions (-128 ‰); besides, εn-C31 (about -116 ‰) is constant along the study transect (SD = 9), which indicates that n-C31 is a useful proxy for the environment.  相似文献   

10.
The δ 18O records of ostracode shells in sediments of core QH-2000 from Qinghai Lake can be used as a better proxy to reflect monsoon changes. Low monsoon precipitation between 17.5 and 11 cal. ka BP is indicated by positive δ 18O values averaging 2.37‰. A fast shift in δ 18O from positive at 11 cal. ka BP to negative at 10 cal. ka BP indicates sharp increase of monsoon precipitation. An interval of generally high monsoon precipitation is observed between 10 and 6 cal. ka BP with δ 18O values averaging -2.15‰. Decrease of monsoon precipitation between 6 and 2.5 cal. ka BP is indicated by positive δ 18O values. δ 18O keeps positive values averaging 3.0‰ between 2.5 and 0 cal. ka BP suggesting low high monsoon precipitation. The climatic changes indicated by δ 18O records of ostracode shells in sedi- ments of core QH-2000 from Qinghai Lake and our broader regional comparison show that the climate in Qinghai Lake since the late Glacial is probably controlled by southwest monsoon other than southeast monsoon.  相似文献   

11.
The secondary biogenic coalbed gas, a new genetic and energy source type of coalbed gas in China, has been found in Xinji, Liyazhuang and Enhong areas. The essential characteristics of this type of gas are: (i) the major component of the gas is methane, with C1/C1-5 value higher than 0.99, indicating that the gas is part of dry gas; (ii) theδ13C1 value is in the range of -61.7‰to -47.9‰, mostly lower than -55‰, which is much lower than the estimatedδ13C1 value of thermogenic methane according to the thermal evolution degree of the coal rocks (with R0 value from 0.87% to 1.43%), showing the characteristics of the secondary biogenic gas; (iii) theδ5D value of methane ranges from -244‰to -196‰; (iv)δ13C 2 value ranges from -26.7‰to -15.9‰andδ13C 3 value ranges from -10.8‰to -25.3‰, indicating that the heavier hydrocarbons have a thermogenic origin; (v) the content of CO2 is very low, andδ13CCO2 value changes greatly, reflecting a characteristic of secondary change; (vi)δ15N2 value ranges mainly from -1‰to +1‰, indicating N2 derived significantly from air. The negative linear correlation between the contents of N2 and CH4 reflects the activity of bacteria bearing surface water infiltrating into coal beds. The comprehensive tracing indices show that the coalbed gas in the studied areas is the mixed gas of primarily secondary biogenic gas and a part of remnant thermogenic gas. The uplift of coal beds and the development of faults in the studied areas create favorable conditions for the formation of the secondary biogenic gas.  相似文献   

12.
Lowest temperature and snow accumulation rate are preconditions for retrieving the oldest ice core from the polar ice sheets. The 10-m depth firn temperature at Dome A, the summit of the Antarctic Ice Sheet, recorded by an automatic weather station (AWS) was -58.3℃ in 2005 and -58.2℃ in 2006, respectively. The 10-m firn temperature is an approximation of the annual mean air temperature (AMAT), and this is the lowest AMAT that has been recorded on the surface of the Earth. The stable isotopic ratios (δ^18O and δD) of surface snow at Dome A are also lower than at other ice sheet domes along the East Antarctic Ice Divide such as Dome C, Dome F, Dome B and Vostok. These facts indicate that Dome A is the "pole of cold" on the Earth. The total amount of snow accumulation rate in 2005 and 2006 was only 0.16 cm, equaling 0.016 m water equivalent per year, the lowest precipitation ever recorded from Antarctica. Preliminary evidences indicate that Dome A is a candidate site for recovering the oldest ice core.  相似文献   

13.
In September 1997, a 15-m firn core was recovered from an elevation of 7 000 m a. s.l. from the Dasuopu Glacier in the central Himalayas. The analysis of δ18O values and major ion (Ca2+ , Mg2+ , NH4+ , SO42- and NO3-) concentrations shows that average annual accumulation is 0.75 m (water equivalent) in the Dasuopu firn core. The seasonal variations of δ18O values and major ion concentrations in the core indicate that present summer monsoon and dust signals are recorded with high-resolution in the Dasuopu Glacier. δ18O in precipitation are controlled by amount effect in summer monsoon season, more negative δ18O is representative of summer monsoon signal in snow layers. Higher concentrations of Ca2+ , Mg2+ , SO42- and NO3-are dominated by spring dust storm imput derived from the arid and semi-arid desert regions in central Asia. Also EOF analysis verifies that high spring concentrations of major ions are consistent. Due to the possibly different sources, the secondary variations of NH4+ and NO3- are negatively relevant with that of Ca2+ and Mg2+ .  相似文献   

14.
In this study, we simulated and analyzed the monthly variations of stable water isotopes in different reservoirs at Manaus, Brazil, using the Community Land Model (CLM) that incorporates stable isotopic effects as a diagnostic tool for understanding stable water isotopic processes, filling the observational data gaps and predicting hydrometeorological processes. The simulation results show that the δ^18O values in precipitation, vapor and surface runoff have distinct seasonality with the marked negative correlations with corresponding water amount. Compared with the survey results by the International Atomic Energy Agency (IAEA) in co-operation with the World Meteorological Organization (WMO), the simulations by CLM reveal the similar temporal distributions of the δ^18O in precipitation. Moreover, the simulated amount effect between monthly δ^18O and monthly precipitation amount, and MWL (meteoric water line) are all close to the measured values. However, the simulated seasonal difference in the δ^18O in precipitation is distinctly smaller than observed one, and the simulated temporal distribution of the δ^18O in precipitation displays the ideal bimodal seasonality rather than the observed single one. These mismatches are possibly related to the simulation capacity and the veracity in forcing data.  相似文献   

15.
Dissolved hydrogen is harmful to mechanical properties of refined hypereutectic aluminum-silicon alloys. In the present work, by using a stepped-form mold and the hydrogen-detecting instrument HYSCAN Ⅱ, the relationship between the initial hydrogen content in the melt and the refinement effect on the casting of hypereutectic aluminum-silicon alloy was investigated. The experimental results show that the cooling rate, the hydrogen content and the grain refinement effect are three interactive factors. When the hydrogen content is above 0.20 mL/100 g and the cooling rate is lower than that in 50 mm-thick step, hydrogen dissolved in the alloy melt influences the grain refinement effect. With increasing the cooling rate, the critical hydrogen content increases too. It is expected that much hydrogen in the melt make the net interfacial energy larger than or equal to zero, resulting in the shielding of the particles AlP during solidification and that the critical gas content is closely related to the critical radius of embryo bubbles.  相似文献   

16.
The effect of cooling rate on the cooling γ' precipitation behaviors was investigated in a Ni-base powder/metallurgy (P/M) superalloy (FGH4096). The empirical equations were established between the cooling rate and the average sizes of secondary and tertiary γ' precipitates within grains and tertiary γ' precipitates at grain boundaries, as well as the apparent width of grain boundaries. The results show that the average sizes of secondary or tertiary γ' precipitates are inversely correlated with the cooling rate. The shape of secondary γ' precipitates within grains changes from butterfly-like to spherical with the increase of cooling rate, but all the tertiaryγ' precipitates formed are spherical in shape. It is also found that tertiary γ' may be precipitated in the latter part of the cooling cycle only if the cooling rate is not faster than 4.3℃/s, and the apparent width of grain boundaries decreases linearly with the increase of cooling rate.  相似文献   

17.
Surface-and subsurface-dwelling planktonic foraminifera from the upper 43 m of Hole A at the Ocean Drilling Program (ODP) Site 807,which was recovered from the western Pacific warm pool during ODP Leg 130,were analyzed for stable oxygen and carbon isotopes.By comparing these results with data from ODP Site 851 in the eastern equatorial Pacific,this study has reconstructed the paleoceanographic changes in upper ocean waters in the equatorial Pacific since 2.5 Ma.During the period from 1.6-1.4 Ma,the oxygen isotopes of surface and subsurface waters were found to markedly change in the western and eastern equatorial Pacific,further confirming the final formation of the well-defined asymmetric east-west (E-W) pattern at that time.This feature was similar to the zonal temperature gradient (sea surface temperature is higher in the west and lower in the east) and the asymmetric upper water structure (thermocline depth is deeper in the west and shallower in the east) in the modern equatorial Pacific.The zonal gradient change of subsurface water δ18O was greater than that of surface water δ18O,indicating that the formation of the asymmetric E-W pattern in the equatorial Pacific should be much more related to the shoaled thermocline and markedly decreased subsurface water temperature in the eastern equatorial Pacific.Moreover,since ~1.6 Ma,the carbon isotopic differences between surface and subsurface waters clearly decreased in the equatorial Pacific,and their long-term eccentricity periods changed from 400 ka to ~500 ka,reflecting the reorganization of the ocean carbon reservoir.This probably resulted from the deep water reorganization in the Southern Ocean at that time and its enhanced influence on the tropical Pacific (especially subsurface water).Our study demonstrates that the tropical ocean plays an important role in global climate change.  相似文献   

18.
Atmospheric water vapor samples were collected in the Nagqu River Basin in the middle of Tibetan Plateau between August and October in 2004. Results show that there exist some fluctuations of the δ^18O of atmospheric water vapor, especially before and after the monsoon's end.Moreover, the variety trend of the δ^18O of atmospheric water vapor inverse correlates with that of dew point. Precipitation events make an important effect upon the variation of δ^18O of atmospheric water vapor. During the whole sampling period, the δ^18O values of atmospheric water vapor are low while precipitation events occurred. The moisture origins w also contribute to the variation of δ^18O of atmospheric water vapor. The oceanic moisture transported by the southwest monsoon results in lower δ^18O of atmospheric water vapor in the Nagqu River Basin. Compared with the influence of the oceanic moisture, the δ^18O values, however, appear high resuiting from the effect of the continental air mass in this region.  相似文献   

19.
In this study, we analyzed stable calcium isotope results of authigenic carbonates from two cold seep areas of the Dongsha area and the Baiyun Sag in the northern South China Sea. The stable isotopes of carbon and oxygen as well as the mineral composition of authigenic carbonates were used to investigate control calcium isotope fractionation. The δ44/40Ca ratios of the southwestern Dongsha area samples ranged from 1.21‰ to 1.52‰ and the ratio of the Baiyun Sag sample was 1.55‰ of the SRM915a isotope standard. X-ray diffraction analysis showed that the carbonate samples consisted of dolomite, calcite and aragonite, with small amounts of high-Mg calcite and siderite. The δ13C values of the carbonates of the southwestern Dongsha area varied between δ49.21‰ and δ16.86‰ of the Vienna PeeDee Belemnite (VPDB) standard and the δ18O values ranged from 2.25‰ to 3.72‰ VPDB. The δ13C value of the Baiyun Sag sample was 2.36‰ VPDB and the δ18O value was 0.44‰ VPDB. The δ13C values of the carbonates of the southwestern Dongsha area revealed there is methane seeping into this area, with a variable contribution of methane-derived carbon. The sampled carbonates covered a range of δ13C values suggesting a dominant methane carbon source for the light samples and mixtures of δ13C values for the heavier samples, with possibly an organic or seawater carbon source. The δ18O values indicated that there is enrichment in 18O, which is related to the larger oxygen isotope fractionation in dolomite compared to calcite. The results of the Baiyun Sag sample exhibited normal seawater carbon and oxygen isotopic values, indicating that this sample is not related to methane seepage but instead to precipitation from seawater. The relatively high δ44/40Ca values indicated either precipitation at comparatively high rates in pore-water regimes with high alkalinity, or precipitation from an evolved heavy fluid with high degrees of Ca consumption (Raleigh type fractionation). The dolomite samples from the Dongsha area revealed a clear correlation between the carbon and calcium isotope composition, indicating a link between the amount and/or rate of carbonate precipitation and methane contribution to the bicarbonate source. The results of the three stable isotope systems, mineralogy and petrography, show that mineral composition, the geochemical environment of authigenic carbonates and carbon source can control the calcium isotope fractionation.  相似文献   

20.
This study analyses the decadal changes in winter precipitation and extreme precipitation in a warming environment in China. The results show that, together with a trend of winter warming in China, winter precipitation and extreme precipitation in the region are also increasing. In addition, concurrent with the decadal warming shift that occurred in the mid-1980s, precipitation and extreme precipitation both increased significantly. Quantitative analysis shows that precipitation and extreme precipitation increased at rates of 9.7% and 22.6% per 1℃ of surface warming in China. This rate of precipitation increase is greater than the global mean, which indicates that precipitation in China is highly sensitive to climate warming and further highlights the importance of studying regional responses to climate warming. The fact that extreme precipitation is increasing at a higher rate than precipitation implies that winter precipitation in China will increasingly be of more extreme type in the context of global warming, which could partly explain why there have recently been a number of record-breaking extreme snowfall events in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号