首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
2.
The modification of DNA by 5-methylcytosine (5mC) has essential roles in cell differentiation and development through epigenetic gene regulation. 5mC can be converted to another modified base, 5-hydroxymethylcytosine (5hmC), by the tet methylcytosine dioxygenase (Tet) family of enzymes. Notably, the balance between 5hmC and 5mC in the genome is linked with cell-differentiation processes such as pluripotency and lineage commitment. We have previously reported that the maternal factor PGC7 (also known as Dppa3, Stella) is required for the maintenance of DNA methylation in early embryogenesis, and protects 5mC from conversion to 5hmC in the maternal genome. Here we show that PGC7 protects 5mC from Tet3-mediated conversion to 5hmC by binding to maternal chromatin containing dimethylated histone H3 lysine 9 (H3K9me2) in mice. In addition, imprinted loci that are marked with H3K9me2 in mature sperm are protected by PGC7 binding in early embryogenesis. This type of regulatory mechanism could be involved in DNA modifications in somatic cells as well as in early embryos.  相似文献   

3.
4.
5.
TET2 is a close relative of TET1, an enzyme that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies. Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukaemia (CMML), acute myeloid leukaemias (AML) and secondary AML (sAML). We show here that TET2 mutations associated with myeloid malignancies compromise catalytic activity. Bone marrow samples from patients with TET2 mutations displayed uniformly low levels of 5hmC in genomic DNA compared to bone marrow samples from healthy controls. Moreover, small hairpin RNA (shRNA)-mediated depletion of Tet2 in mouse haematopoietic precursors skewed their differentiation towards monocyte/macrophage lineages in culture. There was no significant difference in DNA methylation between bone marrow samples from patients with high 5hmC versus healthy controls, but samples from patients with low 5hmC showed hypomethylation relative to controls at the majority of differentially methylated CpG sites. Our results demonstrate that Tet2 is important for normal myelopoiesis, and suggest that disruption of TET2 enzymatic activity favours myeloid tumorigenesis. Measurement of 5hmC levels in myeloid malignancies may prove valuable as a diagnostic and prognostic tool, to tailor therapies and assess responses to anticancer drugs.  相似文献   

6.
7.
5-Hydroxymethylcytosine (5hmC) was present in T-even phage and mammalian DNA. 5hmC in phage is formed by hydroxymethylation of the cytosine base in deoxycytidylate (dCMP) by deoxycytidylate hydroxymethylase (CH), which uses the solvent water as the hydroxyl group donor. By contrast, 5hmC is formed in mammal zygotes by the oxidation of 5-methylcytosine (5mC). 5hmC was also present in a nucleoside antibiotic mildiomycin and its formation is governed by a cytidylate hydroxymethylase MilA. However, the catalytic mechanism remains unknown. In the present study, we purified His-tagged MilA and fed its in vitro reaction with H218O. The LC-MS analysis of the product revealed that 18O was incorporated into the hydroxymethylated CMP (HmCMP), and the secondary MS result of 18O-labeled HmCMP indicated that 18O was incorporated into the cytosine of HmCMP. The results demonstrate that MilA uses solvent water as the hydroxyl group donor like CH. Moreover, Thr102 of MilA was predicted as potential critical amino acid anchoring one molecule of water for hydroxylation. Finally, organizational context comparison in microbial genomes reveals that six homologous ORFs originally annotated as putative thymidylate synthase (TS) are more likely to be CMP hydroxymethylase.  相似文献   

8.
9.
Wu H  D'Alessio AC  Ito S  Xia K  Wang Z  Cui K  Zhao K  Sun YE  Zhang Y 《Nature》2011,473(7347):389-393
  相似文献   

10.
A unique regulatory phase of DNA methylation in the early mammalian embryo   总被引:2,自引:0,他引:2  
Smith ZD  Chan MM  Mikkelsen TS  Gu H  Gnirke A  Regev A  Meissner A 《Nature》2012,484(7394):339-344
DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)--including many CpG island promoters--that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.  相似文献   

11.
12.
Chromatin-modifying enzymes as modulators of reprogramming   总被引:2,自引:0,他引:2  
  相似文献   

13.
Epigenetic reprogramming in mammalian nuclear transfer   总被引:3,自引:0,他引:3  
Somatic cloning has been succeeded in some species, but the cloning efficiency is very low, which limits the application of the technique in many areas of research and biotechnology. The cloning of mammals by somatic cell nuclear transfer (NT) requires epigenetic reprogramming of the differentiated state of donor cell to a totipotent, embryonic ground state. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. This review summarizes the roles of various epigenetic mechanisms, including DNA methylation, histone acetylation, imprinting, X-chromosome inactivation, telomere maintenance and expressions of development-related genes on somatic nuclear transfer.  相似文献   

14.
DNA methylation is an epigenetic modification that is essential for gene silencing and genome stability in many organisms. Although methyltransferases that promote DNA methylation are well characterized, the molecular mechanism underlying active DNA demethylation is poorly understood and controversial. Here we show that Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha), a nuclear protein involved in maintenance of genomic stability, DNA repair and suppression of cell growth, has a key role in active DNA demethylation. Gadd45a overexpression activates methylation-silenced reporter plasmids and promotes global DNA demethylation. Gadd45a knockdown silences gene expression and leads to DNA hypermethylation. During active demethylation of oct4 in Xenopus laevis oocytes, Gadd45a is specifically recruited to the site of demethylation. Active demethylation occurs by DNA repair and Gadd45a interacts with and requires the DNA repair endonuclease XPG. We conclude that Gadd45a relieves epigenetic gene silencing by promoting DNA repair, which erases methylation marks.  相似文献   

15.
16.
Demethylation of CpG islands in embryonic cells   总被引:16,自引:0,他引:16  
D Frank  I Keshet  M Shani  A Levine  A Razin  H Cedar 《Nature》1991,351(6323):239-241
DNA in differentiated somatic cells has a fixed pattern of methylation, which is faithfully copied after replication. By contrast, the methylation patterns of many tissue-specific and some housekeeping genes are altered during normal development. This modification of DNA methylation in the embryo has also been observed in transgenic mice and in transfection experiments. Here we report the fate in mice of an in vitro-methylated adenine phosphoribosyltransferase transgene. The entire 5' CpG island region became demethylated, whereas the 3' end of the gene remained modified and was even methylated de novo at additional sites. Transfection experiments in vitro show that the demethylation is rapid, is specific for embryonic cell-types and affects a variety of different CpG island sequences. This suggests that gene sequences can be recognized in the early embryo and imprinted with the correct methylation pattern through a combination of demethylation and de novo methylation.  相似文献   

17.
Egli D  Rosains J  Birkhoff G  Eggan K 《Nature》2007,447(7145):679-685
Until now, animal cloning and the production of embryonic stem cell lines by somatic cell nuclear transfer have relied on introducing nuclei into meiotic oocytes. In contrast, attempts at somatic cell nuclear transfer into fertilized interphase zygotes have failed. As a result, it has generally been assumed that unfertilized human oocytes will be required for the generation of tailored human embryonic stem cell lines from patients by somatic cell nuclear transfer. Here we report, however, that, unlike interphase zygotes, mouse zygotes temporarily arrested in mitosis can support somatic cell reprogramming, the production of embryonic stem cell lines and the full-term development of cloned animals. Thus, human zygotes and perhaps human embryonic blastomeres may be useful supplements to human oocytes for the creation of patient-derived human embryonic stem cells.  相似文献   

18.
In somatic cell nuclear transfer (SCNT) technologies, the donor cell's nuclei need to be epigenetically reprogrsmmed for embryonic development. The incomplete reprogramming of donor cell nuclei has been Implicated as s primary reason for the low efficiency of SCNT. DNA methylstion is s major epigenetic modification of the genome that regulates crucial aspects of genome function, including establishment of genomic imprinting. In order to make sure whether the DNA methylstion reprogramming is efficient in SCNT animals, we analyzed the DNA methylstion status of two imprinting genes, H19 and Xist, in lungs of deceased SCNT bovines that died within 48 h of birth using bisulfite sequencing analysis. Our findings demonstrated that cloned bovines showed significantly lower DNA methylstion of H19 than controls (P〈0.05), and three tested CpGs sites (1, 2, 3) exhibited unmethylstion in one cloned bovine (9C3); however, Xist showed similar DNA methylation levels between clones and controis, and both showed hypermethylstion (96.11% and 86.67%).  相似文献   

19.
Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However, it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines, along with methylomes of ES cells, somatic cells, and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability, including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation, and differences in CG methylation and histone modifications. Lastly, differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency, providing an iPSC reprogramming signature that is maintained after differentiation.  相似文献   

20.
高活力水稻种子萌发过程中DNA甲基化变化的MSAP分析   总被引:2,自引:0,他引:2  
DNA甲基化是基因组DNA的一种主要表观遗传修饰形式,是调节基因组功能的重要手段。本实验采用MSAP方法分析,旨在研究高活力水稻种子萌发过程中的甲基化与去甲基化变化的规律,为研究种子的老化机理和种子的长期保存提供依据。结果表明:水稻种子萌发过程中,同时发生了甲基化与去甲基化作用,且去甲基化作用先于甲基化作用发生。发生去甲基化可能与基因活化有关,发生甲基化可能与组织特异性有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号