首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了系统尺度L=8的一维XXZ环形自旋链中的两体和多体量子纠缠以及两体量子失协,在这个过程中,充分考虑了温度和粒子间隔对纠缠和量子失谐的影响.结果发现,同种情况下,三体和四体纠缠比两体的更加“强壮”,且在低温条件下,利用多体纠缠可以探测到系统发生量子相变的临界点.与纠缠相比,量子失谐可以在较高温度下存在,且在相变点处总是表现出尖峰行为,这使得量子失谐在探测相变点方面更具优越性.  相似文献   

2.
分析了横磁场中各向同性XY自旋链的基态能量和纠缠问题。研究发现,三量子比特系统中存在一个相变点,此点上,基态能量和纠缠可发生量子相变,基态从W态进入非纠缠;而四量子比特系统存在两个相变点,基态的能量和纠缠均可在相变点处发生量子相变,使纠缠性质发生改变。随着磁场强度的增大,基态纠缠逐渐减小,直到完全消失。四比特系统纠缠的减小要比三比特系统纠缠减小的速度缓慢。  相似文献   

3.
对于具有阻挫作用的反铁磁自旋梯子,采用多体格林函数方法并结合Jordan-Wigner变换,计算系统中近邻双格点的纠缠,分析纠缠的奇异性与量子相变之间关系.发现随着外磁场的变化,纠缠出现奇异即发生量子相变,但在量子相变点纠缠不一定出现奇异,这说明纠缠奇异与量子相变并非一一对应,此外纠缠平台与磁化平台一一对应.  相似文献   

4.
Horodecki M  Oppenheim J  Winter A 《Nature》2005,436(7051):673-676
Information--be it classical or quantum--is measured by the amount of communication needed to convey it. In the classical case, if the receiver has some prior information about the messages being conveyed, less communication is needed. Here we explore the concept of prior quantum information: given an unknown quantum state distributed over two systems, we determine how much quantum communication is needed to transfer the full state to one system. This communication measures the partial information one system needs, conditioned on its prior information. We find that it is given by the conditional entropy--a quantity that was known previously, but lacked an operational meaning. In the classical case, partial information must always be positive, but we find that in the quantum world this physical quantity can be negative. If the partial information is positive, its sender needs to communicate this number of quantum bits to the receiver; if it is negative, then sender and receiver instead gain the corresponding potential for future quantum communication. We introduce a protocol that we term 'quantum state merging' which optimally transfers partial information. We show how it enables a systematic understanding of quantum network theory, and discuss several important applications including distributed compression, noiseless coding with side information, multiple access channels and assisted entanglement distillation.  相似文献   

5.
Fermi-liquid theory (the standard model of metals) has been challenged by the discovery of anomalous properties in an increasingly large number of metals. The anomalies often occur near a quantum critical point--a continuous phase transition in the limit of absolute zero, typically between magnetically ordered and paramagnetic phases. Although not understood in detail, unusual behaviour in the vicinity of such quantum critical points was anticipated nearly three decades ago by theories going beyond the standard model. Here we report electrical resistivity measurements of the 3d metal MnSi, indicating an unexpected breakdown of the Fermi-liquid model--not in a narrow crossover region close to a quantum critical point where it is normally expected to fail, but over a wide region of the phase diagram near a first-order magnetic transition. In this regime, corrections to the Fermi-liquid model are expected to be small. The range in pressure, temperature and applied magnetic field over which we observe an anomalous temperature dependence of the electrical resistivity in MnSi is not consistent with the crossover behaviour widely seen in quantum critical systems. This may suggest the emergence of a well defined but enigmatic quantum phase of matter.  相似文献   

6.
Quantum criticality is associated with a system composed of a nearly infinite number of interacting quantum degrees of freedom at zero temperature, and it implies that the system looks on average the same regardless of the time- and length scale on which it is observed. Electrons on the atomic scale do not exhibit such symmetry, which can only be generated as a collective phenomenon through the interactions between a large number of electrons. In materials with strong electron correlations a quantum phase transition at zero temperature can occur, and a quantum critical state has been predicted, which manifests itself through universal power-law behaviours of the response functions. Candidates have been found both in heavy-fermion systems and in the high-transition temperature (high-T(c)) copper oxide superconductors, but the reality and the physical nature of such a phase transition are still debated. Here we report a universal behaviour that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a quantum phase transition of an unconventional kind in the high-T(c) superconductors.  相似文献   

7.
Roch N  Florens S  Bouchiat V  Wernsdorfer W  Balestro F 《Nature》2008,453(7195):633-637
Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.  相似文献   

8.
The role the quantum entanglement plays in quantum computation speedup has been widely disputed. Some believe that quantum computation's speedup over classical computation is impossible if entan-glement is absent,while others claim that the presence of entanglement is not a necessary condition for some quantum algorithms. This paper discusses this problem systematically. Simulating quantum computation with classical resources is analyzed and entanglement in known algorithms is reviewed. It is concluded that the presence of entanglement is a necessary but not sufficient condition in the pure state or pseudo-pure state quantum computation speedup. The case with the mixed state remains open. Further work on quantum computation will benefit from the presented results.  相似文献   

9.
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.  相似文献   

10.
Simon J  Bakr WS  Ma R  Tai ME  Preiss PM  Greiner M 《Nature》2011,472(7343):307-312
Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.  相似文献   

11.
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4?T), low-temperature (2.9?K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.  相似文献   

12.
用量子理论方法给出两光子的自旋态, 即通过2个单光子自旋态的直积并叠加得到两光子的自旋本征态, 从而给出两光子的纠缠态, 所得结果与用经典极化矢量表示的两光子纠缠态不同, 该结果可应用于量子通讯和量子计算中.  相似文献   

13.
运用全量子理论,研究双模压缩真空态与运动原子相互作用过程中,双模光场的模间纠缠性质,讨论了原子初态处于激发态时,原子运动和场模结构对模间纠缠性质的影响.结果表明,原子的运动速度和场模结构影响模间纠缠度,但不破坏模间纠缠演化的周期性.  相似文献   

14.
在具有普适意义的非平衡相变临界规格化模型基础上,讨论了一般自组织系统中的非平衡定态跃迁相变的临界奇异性和可标度性,导出一组普适的临界指数标度关系及普适类,由之计算出的四组非平衡普适类的临界数值与目前已知的实验及理论结果吻合得非常好。本文还讨论了平衡相变与非平衡相变的临界联系及普适性,将平衡相变临界标度理论的结果作为非平衡相变临界标度理论的理论极限而统一在同一理论体系中。  相似文献   

15.
《贵州科学》2003,21(2)
在具有普适意义的非平衡相变临界规格化模型基础上,讨论了一般自组织系统中的非平衡定态跃迁相变的临界奇异性和可标度性,导出一组普适的临界指数标度关系及普适类,由之计算出的四组非平衡普适类的临界数值与目前已知的实验及理论结果吻合得非常好.本文还讨论了平衡相变与非平衡相变的临界联系及普适性,将平衡相变临界标度理论的结果作为非平衡相变临界标度理论的理论极限而统一在同一理论体系中.  相似文献   

16.
由EPR佯谬,薛定谔“猫态”等超越直观的纯量子现象产生的量子纠缠理论从其概念提出以来一直被人们认为既是量子理论最为重要的概念之一,也是在量子通讯中实现“稠密编码”和“隐形传态”的关键。然而,最近研究结果显示,量子纠缠并不能够完全解释量子关联所有特性。人们发现,除了纠缠以外,还存在对量子信息和量子计算具有极其重要意义的其它非经典关联,如量子失协是一个纯量子比特确定性量子计算机具有计算效率的原因。这说明,量子失协完全可以成为量子计算新的一种资源。文章介绍了非经典关联(包括量子纠缠)的基本概念及其度量方法,对量子失协在各类模型中表现出的量子关联特性进行分析和与量子纠缠,经典关联比较,从而体现出在各类量子体系中对量子失协进行研究的意义,同时引导理论和实验研究者去研究量子失协的潜在研究价值。  相似文献   

17.
Synchronized oscillators are ubiquitous in nature, and synchronization plays a key part in various classical and quantum phenomena. Several experiments have shown that in thin superconducting films, disorder enforces the droplet-like electronic texture--superconducting islands immersed into a normal matrix--and that tuning disorder drives the system from superconducting to insulating behaviour. In the vicinity of the transition, a distinct state forms: a Cooper-pair insulator, with thermally activated conductivity. It results from synchronization of the phase of the superconducting order parameter at the islands across the whole system. Here we show that at a certain finite temperature, a Cooper--air insulator undergoes a transition to a superinsulating state with infinite resistance. We present experimental evidence of this transition in titanium nitride films and show that the superinsulating state is dual to the superconducting state: it is destroyed by a sufficiently strong critical magnetic field, and breaks down at some critical voltage that is analogous to the critical current in superconductors.  相似文献   

18.
在具有普适意义的非平衡相变临界规格化模型基础上,讨论了一般非平衡定态跃迁相变的临界奇异性和可标度性,导出一组普适的临界指数标度关系及普适类,由之计算出的四组非平衡普适类的临界数值与目前已知的实验及结果吻合得非常好。  相似文献   

19.
宏观引力系统,比如黑洞,与非引力系统在热力学方面很不一样,其态函数熵与温度本质上是量子的,没有经典对应,因此对应的热力学在一定意义上来说本质上也是量子的,这为探讨量子引力提供了一个重要窗口.本文综述讨论作者及其合作者近期一系列有关黑洞的高维推广黑膜(超弦/M-理论中的基本动力学客体)的热力学相、相变及相关的临界现象的工作,希望为建立M-理论的完整理论框架提供重要的非微扰信息.  相似文献   

20.
本文研究了U(2)振动子模型在大N极限以及有限N情况下的量子相变行为,并讨论了临界点对称性概念在一维系统中的适用性.通过对U(2)振动子模型的势能结构,低激发谱等动力学性质的分析,我们发现系统在临界点处是最容易激发的,其低激发动力学特征可以由E(1)临界点对称性近似地描述,但随着激发能增加,近似逐渐破坏.进一步我们又数值分析了临界点处能谱的玻色子数依赖规律,结果表明二级相变临界点处的能谱随玻色子数变化的指数规律是不依赖维数的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号