首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对有源电力滤波器(APF)直流侧电压传统PI控制策略参数难以确定的问题,设计了一种基于模糊控制的参数自整定的模糊PI控制器.通过对APF的工作原理分析可知谐波电流补偿效果与直流侧电压稳定密切相关.以实际电压与给定电压的差值及其变化率为输入量建立模糊控制规则,实现PI参数自调节的目的.MATLAB仿真结果表明,在模糊PI控制策略下,直流侧电压更稳定,APF滤波效果也更好.  相似文献   

2.
电力有源滤波器直流侧电压控制关键技术的研究   总被引:1,自引:0,他引:1  
为了实现对电力有源滤波器(APF)直流侧电压的有效控制,本文通过三段式软启动建压措施克服装置投入瞬间的冲击电流,并从主电路的拓扑结构找到直流侧电压的取值方法,提出了基于电压偏差平方值PI控制的策略降低了装置的空载电流,改善了补偿效果.样机的实际运行工况验证了系统控制方案的可行性,对电力有源滤波器的研制以及工程应用有一定的指导意义.  相似文献   

3.
为消除有源电力滤波器(Active Power Filters,APF)直流储能单元充电过程中的谐波和无功电流,将APFC(Ac-tive Power Factor Correction)技术引入到有源滤波器直流储能单元的电压控制中,提出了APF直流储能单元电压数字控制技术与电压控制器和电流控制器的设计方法.仿真结果表明:采用APFC能够主动消除APF充电电流中的谐波和无功电流,提高储能单元的电压稳定性和动态响应特性.  相似文献   

4.
一种电力有源滤波器及其仿真研究   总被引:1,自引:0,他引:1  
讨论了一种用于电力无功与谐波补偿的有源滤波器主电路及闭环控制系统的结构和工作原理。该方案不需要实时检测与计算非线性负载的无功电流成分,并具有电流跟踪控制响应快和简单易行等特点。利用PSPICE软件进行仿真研究的结果证实了该系统的有效性。  相似文献   

5.
单相串联型直流侧有源电力滤波器   总被引:2,自引:0,他引:2  
提出了一种单相串联型直流侧有源电力滤波器。与传统的单相有源电力滤波器相比,有源开关的数量减少了一半,简化了电路结构,降低了成本。串联型直流侧有源电力滤波器采用双环控制,电流控制跟踪电源电压变化,电压控制调整有源电力滤波器的能量流向。通过改变有源电力滤波器上储能电容电压极性,实现对电感电流的连续可控,提供负载所需要的谐波电压,使电源电流成为与电源电压同频同相的正弦波,从而实现谐波治理。这种控制方法具有结构简单、补偿效果好等优点。仿真结果验证了所提出理论的正确性。  相似文献   

6.
并联型电力有源滤波器的仿真研究   总被引:7,自引:0,他引:7  
在介绍并联型电力有源滤波器及其控制方式的基础上,提出了并联型电力有源滤波器的仿真模型,并使用科学计算软件Matlab对该模型进行仿真,最后给出了与实验相一致的仿真结果。  相似文献   

7.
针对大功率稳定直流电源对负载的低纹波要求,提出了一种耦合变压器型串联直流有源电力滤波器.采用检测无源滤波支路纹波电压的控制方法,有源电力滤波器实现了大功率相控整流电源输出的低纹波要求,并且有源电力滤波器的补偿效果在放大倍数为1时最佳.为了保证变压器铁芯不饱和,必须给这种耦合变压器的铁芯增加气隙.在此基础上,讨论了耦合变压器的基本设计方法.实验结果验证了耦合变压器型串联直流有源电力滤波器具有良好的补偿性能.  相似文献   

8.
有源电力滤波器是一种新型的谐波电流、无功功率和不平衡分量动态补偿设备,控制其逆变器直流侧电压在适当范围内波动是保证并联型有源电力滤波器具有良好补偿性能的一个重要因素。本文分析了传统的PI稳定控制策略的缺点,提出改进的PI控制方法,降低PI参数的整定难度,提高了直流侧电压的稳定性能。最后考虑各种暂态情况,提出完善的直流侧电压保护措施。  相似文献   

9.
有源滤波器直流侧电压闭环控制的稳定性研究   总被引:6,自引:0,他引:6  
分析了三相系统中无功电流和谐波电流瞬时功率的性质。从有源电力滤波器交直流侧瞬时功率平衡方程的角度出发,推导了关于小信号扰动的近似等效的数学模型,获得了在此例控制和比例积分控制下的稳定性判据。最后用计算机仿真验证了理论分析的正确性。  相似文献   

10.
介绍了一种由LC无源滤波器与有源滤波器串联构成的并联混合型有源电力滤波器.针对该滤波器提出了一种控制方法,这种方法无需复杂的谐波检测,从而使整个控制系统得以简化,最后通过仿真对所提出的方法进行了验证,仿真表明这种方法具有良好的无功电流和谐波电流补偿效果.  相似文献   

11.
一种并联型有源电力滤波器的研究   总被引:1,自引:0,他引:1  
针对高压交流配电系统,提出一种基于线性并联变压器谐波阻抗控制的并联型有源电力滤波器新原理.实时检测并联变压器一次侧的谐波电流,通过逆变器向二次侧注入谐波补偿电流,在一定的补偿系数下,并联变压器一次侧对谐波电流呈现近似为零的低阻抗,而对基波电流呈现很大的一次侧自阻抗,从而输导配电系统中的谐波电流流入并联变压器支路.这种滤波原理在10~35 kV高压交流配电系统中将有着广阔的应用前景.仿真和实验结果证明了这种滤波新原理的正确性.  相似文献   

12.
可选择谐波型有源滤波器的检测及其闭环控制   总被引:6,自引:0,他引:6  
为了实现对电力系统谐波的实时和精确补偿,该文提出了一种用于有源电力滤波器任意指定次谐波的检测方法以及基于该检测方法的闭环控制方法。这种有源电力滤波器由选择性谐波检测环节、电压控制和电流控制环节组成。为了补偿数字控制器和逆变器带来的延时,在检测环节中加入了预测补偿角。电压闭环控制方法借助检测环节实现了对谐波电流发生电路中逆变器直流侧的电压控制。电流闭环控制方法使得实际补偿电流精确地跟踪检测出的谐波指令电流。仿真结果验证了该控制方法的正确性,在采用上述方法后,电源电流得到根本的改善。  相似文献   

13.
针对高压大功率场所对大容量谐波抑制与无功补偿的要求,提出了一种新型混合型大功率有源电力滤波器NHAPF的拓扑结构。对其控制策略和基本工作原理进行了分析,并对NHAPF的谐波抑制特性进行仿真验证。  相似文献   

14.
直流侧串联型有源电力滤波器的单周控制方法   总被引:3,自引:1,他引:2  
单周控制(one cycle control,OCC)因其控制结构简单,控制精度高,响应速度快等优点,已被广泛用于有源电力滤波器(active power filter,APF)的控制。目前单周控制技术主要集中在并联型APF的控制中,而对单周控制应用于串联型APF仍需要进一步研究。文中将单周控制理论应于直流侧串联型APF,通过对其主电路工作原理的分析,导出了用于DC(direct current)侧串联型APF的单周控制数学关系,并建立了控制方程。仿真结果验证该理论的正确性与可靠性。  相似文献   

15.
针对典型电流型谐波源负载的特点,提出了采用基于改进瞬时无功功率理论的并联型有源电力滤波器的补偿方案,并根据并联型有源电力滤波器的基本工作原理、系统结构和PWM控制思想,利用MAT-LAB中的电力系统仿真工具箱,对基于PWM控制的并联型有源电力滤波器补偿电流型谐波源负载的方案进行了建模和仿真,给出了仿真模型,通过仿真实验研究,结果证实了所提方案的正确性和可行性。  相似文献   

16.
采用电力有源滤波器是目前公认的改善供电质量的有效方法,考虑生产成本及运行成本,采用无源加有源综合补偿的方式是最为合理的方法。在此方案中使用电力电子器件的有源滤波器部分功率不必很大,可使用小功率器件设计电路。因此在大功率电力电路中如何保护电子器件显得尤其重要。从保护电力电子器件的角度对一种使用IGBT(Insolate Gate controlling Bipolar Transistor)的电力有源滤波电路进行了仿真研究,得到一些有益的结论。  相似文献   

17.
针对电能表采样过程中非整周期采样造成的有功功率测量和电能计量误差,在传统滤波器功率测量算法基础上,首先提出了一种多项Sa函数自卷积窗函数(P-Sa窗),分析了该窗的时频特性;然后基于该窗构造了P-Sa滤波器,仿真分析了非整周期采样下P-Sa滤波器的滤波效果;最后,基于工频正弦波形和IEC62052中的5种畸变波形测试信号,仿真分析了稳态和动态测试信号下不同有功功率测量算法对累计电能的误差。仿真结果表明,提出的P-Sa滤波器可以有效抑制纹波波动,提高了有功电能累计的准确性。  相似文献   

18.
根据有源电力滤波器与三相光伏并网发电的工作原理,设计一种具备光伏并网发电功能的有源电力滤波器.采用箕舌线变步长LMS谐波检测合成方法对光伏并网指令信号进行合并和谐波信号检测,采用广义比例积分控制和快速重复控制算法串联的方式,控制系统的响应能力变快,最大功率点跟踪控制方式采用变步长扰动观测法,通过Matlab/Simulink对系统建模仿真分析,验证该系统的正确性和可行性.  相似文献   

19.
研究了基波磁势自平衡串并联混合有源电力滤波器.其串联在系统和谐波负载之间的零磁通变流器可自动实现对基波呈现低阻抗,对谐波呈现高阻抗,并可实时方便地检测出剩余谐波电流流过变流器时产生的谐波电压降.通过逆变器产生一个与检测到的谐波电压成正比的谐波电压源,并通过耦合变压器与无源滤波器串联之后再并联接入电网,从而更好地减少流入系统的谐波电流.实验结果证明了结论的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号