首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
在自旋转变材料中,由于晶体场能量与电子配对能量的竞争,改变温度可使自旋转变材料在低自旋态与高自旋态之间转变.文章以自旋转变材料与顺磁金属(如Pt)构成的双层膜系统为研究对象,当高自旋态自旋转变材料呈现铁磁性时,在双层膜界面内施加互相垂直的外磁场与激发场,激发场可以泵浦自旋流从自旋转变材料进入顺磁金属,由于逆自旋霍尔效应...  相似文献   

2.
提出一种利用经典场驱动单个二能级原子与 3个单模腔场发生色散相互作用 ,最后对原子进行选择性测量 ,从而实现类自旋的腔场GHZ态的制备。利用现有的腔QED技术 ,加上对原子的激光操纵—Stark效应和Rabi频率的交替控制 ,可以在实验上实现上述GHZ态的制备  相似文献   

3.
提出一种利用经典场驱动单个二能级原子与3个单模肠场发生色散相互作用,最后对原子进行选择性测量,从而实现类自旋的腔场GHZ态的制备。利用现有的腔QED技术,加上对原子的激光操纵-Stark效应和Rabi频率的交替控制,可以在实验上实现上述GHZ态的制备。  相似文献   

4.
对于空间不均匀的人工规范场,由于位置和动量耦合在一起,冷原子物理中常用的时间分裂谱方法将不再适用。为了计算空间不均匀的人工规范场中的冷原子动力学行为,这里给出人工规范场中冷原子气体的薛定谔方程的差分算法,在我们的算法中人工规范场使得动能项的差分出现和人工规范场的联结函数,在文中分别就阿贝场和非阿贝场用待定系数法和格点规范理论给出了处在人工规范场中的冷原子气体的薛定谔方程的格点规范差分格式。我们先以最简单的U(1)的虚拟阿贝规范场为例,用两种方法分别给出相同的差分形式。对于更为复杂的SU(N),我们以SU(2)为例用两种方法给出了差分形式。然后用所得到的差分格式计算了冷原子物理中一个很典型的现象自旋霍尔效应。  相似文献   

5.
本文研究激光场与原子相互作用时,激光场用相干态描述,原子用自旋态描述,得到了场和原子各自的动力学变化规律。本文研究激光场与三个两能级原子的相互作用。在不同的初始条件下,得到了光子数与原子状态各自随时间的变化关系。光子数很大时,量子理论结果与半径典理论结果是一致的。  相似文献   

6.
近年来型超新星的观测结果表明宇宙在加速膨胀,并且驱动宇宙加速膨胀的暗能量占据宇宙总能量密度的2/3.目前,物理学家们已经根据实验观测结果提出了一些暗能量的模型.这些模型的最主要的区别是它们预测了暗能量的不同的态方程,近而给出了不同的宇宙论,但是它们的态方程参数叫都限制在-1<ω<-1/3的范围内.然而最近的观测数据似乎支持暗能量的态方程参数ω由之前的ω-1[1]演化到当今时代的ω<-1.在本文中我们考虑了一个含三个实标量场的暗能量模型来实现上述情况.在本文的讨论中我们均考虑ρm≤ρφ  相似文献   

7.
在一些铁磁绝缘体中,由于Dzyaloshinskii–Moriya(DM)相互作用的存在,会出现磁振子霍尔效应,即如果在横向施加一个温度梯度,在纵向上会有热流产生.对Checkerboard模型中可能存在的磁振子霍尔效应做了讨论,通过对角化沿横向取周期边界条件,纵向自由边界条件的体系的哈密顿量确定了该体系中存在受拓扑保护的边缘态,并且根据磁振子的半经典运动方程,计算了纵向热导率随温度的变化曲线.这些结果对于实验上寻找新的具有磁振子霍尔效应的体系及其在自旋电子学上的应用具有一定的积极贡献.  相似文献   

8.
提出一种利用经典场驱动单个二能级原子与一双模腔场相互作用制备腔场的纠缠相干态的方案。通过对原子的激光操纵 ,包括Stark效应和Rabi频率的交替控制 ,使原子与双模腔场相互作用后演化为纠缠态 ,再对原子进行选态测量即可获得所要制备的量子态。  相似文献   

9.
提出一种利用经典场驱动单个二能级原子与一双模腔场相互作用制备腔场的纠缠干态的方案,通过对原子的激光操纵,包括Stark效应和Rabi频率的交替控制,使原子与双模腔场相互作用后演化为纠缠态,再对原子进行选态测量即可获得要制备的量子态。  相似文献   

10.
从巨磁阻效应正式拉开自旋电子学的序幕开始,如何控制和操纵电子的自旋自由度在学术界和工业界掀起了巨大的研究浪潮,如何产生并测量自旋流也是自旋电子学面临的重大挑战.自旋轨道耦合为自旋电子学提供了利用全电学来控制自旋的物理基础,由自旋轨道耦合引起的自旋霍尔效应则为自旋电子学提供了产生较大纯自旋流的方法.本文从1879年Edwin Hall发现的那个迷人的效应谈起,同时从自旋轨道耦合的起源来认识自旋霍尔效应,进一步探讨了如何利用其逆效应来探测自旋霍尔效应及自旋流,并简单总结了与自旋霍尔效应相关的部分新效应及新应用.  相似文献   

11.
We review our recent theoretical advances in quantum information and many body physics with cold atoms in various external potential, such as harmonic potential, kagome optical lattice, triangular optical lattice, and honeycomb lattice. The many body physics of cold atom in harmonic potential is investigated in the frame of mean-field Gross-Pitaevskii equation. Then the quantum phase transition and strongly correlated effect of cold atoms in triangular optical lattice, and the interacting Dirac fermions on honeycomb lattice, are investigated by using cluster dynamical mean-field theory and continuous time quantum Monte Carlo method. We also study the quantum spin Hall effect in the kagome optical lattice.  相似文献   

12.
In this paper, we review our recent experimental developments on antiferromagnet (AFM) spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring is realized by adopting ionic liquid. In addition, promising spin-orbit effects in AFM as well as spin transfer via AFM spin waves reported by different groups have also been reviewed, indicating that the AFM can serve as an efficient spin current source. To explore the crucial role of AFM acting as efficient generators, transmitters, and detectors of spin currents is an emerging topic in the field of magnetism today. AFM metals are now ready to join the rapidly developing fields of basic and applied spintronics, enriching this area of solid-state physics and microelectronics.  相似文献   

13.
利用推广的自洽迭代递归方法,精确求解了具有s-d交换相互作用系统的磁场顶角函数;计算了Kondo电导张量.发现,经过顶角函数的高级修正后,电导张量缩小到无高级修正值的1/(1+h~2).  相似文献   

14.
Liu C  Dutton Z  Behroozi CH  Hau LV 《Nature》2001,409(6819):490-493
Electromagnetically induced transparency is a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium; a 'coupling' laser is used to create the interference necessary to allow the transmission of resonant pulses from a 'probe' laser. This technique has been used to slow and spatially compress light pulses by seven orders of magnitude, resulting in their complete localization and containment within an atomic cloud. Here we use electromagnetically induced transparency to bring laser pulses to a complete stop in a magnetically trapped, cold cloud of sodium atoms. Within the spatially localized pulse region, the atoms are in a superposition state determined by the amplitudes and phases of the coupling and probe laser fields. Upon sudden turn-off of the coupling laser, the compressed probe pulse is effectively stopped; coherent information initially contained in the laser fields is 'frozen' in the atomic medium for up to 1 ms. The coupling laser is turned back on at a later time and the probe pulse is regenerated: the stored coherence is read out and transferred back into the radiation field. We present a theoretical model that reveals that the system is self-adjusting to minimize dissipative loss during the 'read' and 'write' operations. We anticipate applications of this phenomenon for quantum information processing.  相似文献   

15.
Ginsberg NS  Garner SR  Hau LV 《Nature》2007,445(7128):623-626
In recent years, significant progress has been achieved in manipulating matter with light, and light with matter. Resonant laser fields interacting with cold, dense atom clouds provide a particularly rich system. Such light fields interact strongly with the internal electrons of the atoms, and couple directly to external atomic motion through recoil momenta imparted when photons are absorbed and emitted. Ultraslow light propagation in Bose-Einstein condensates represents an extreme example of resonant light manipulation using cold atoms. Here we demonstrate that a slow light pulse can be stopped and stored in one Bose-Einstein condensate and subsequently revived from a totally different condensate, 160 mum away; information is transferred through conversion of the optical pulse into a travelling matter wave. In the presence of an optical coupling field, a probe laser pulse is first injected into one of the condensates where it is spatially compressed to a length much shorter than the coherent extent of the condensate. The coupling field is then turned off, leaving the atoms in the first condensate in quantum superposition states that comprise a stationary component and a recoiling component in a different internal state. The amplitude and phase of the spatially localized light pulse are imprinted on the recoiling part of the wavefunction, which moves towards the second condensate. When this 'messenger' atom pulse is embedded in the second condensate, the system is re-illuminated with the coupling laser. The probe light is driven back on and the messenger pulse is coherently added to the matter field of the second condensate by way of slow-light-mediated atomic matter-wave amplification. The revived light pulse records the relative amplitude and phase between the recoiling atomic imprint and the revival condensate. Our results provide a dramatic demonstration of coherent optical information processing with matter wave dynamics. Such quantum control may find application in quantum information processing and wavefunction sculpting.  相似文献   

16.
Berciu M  Rappoport TG  Jankó B 《Nature》2005,435(7038):71-75
The continuous need for miniaturization and increase in device speed drives the electronics industry to explore new avenues of information processing. One possibility is to use electron spin to store, manipulate and carry information. All such 'spintronics' applications are faced with formidable challenges in finding fast and efficient ways to create, transport, detect, control and manipulate spin textures and currents. Here we show how most of these operations can be performed in a relatively simple manner in a hybrid system consisting of a superconducting film and a paramagnetic diluted magnetic semiconductor (DMS) quantum well. Our proposal is based on the observation that the inhomogeneous magnetic fields of the superconducting film create local spin and charge textures in the DMS quantum well, leading to a variety of effects such as Bloch oscillations and an unusual quantum Hall effect. We exploit recent progress in manipulating magnetic flux bundles (vortices) in superconductors and show how these can create, manipulate and control the spin textures in DMSs.  相似文献   

17.
飞秒激光具有超短的脉冲宽度和超强的峰值功率,已经成为测量和操控原子分子超快动力学行为的重要工具.但是强激光场下,原子分子行为非常复杂,多个反应通道纠缠在一起.全微分符合测量技术能够提供特定反应通道精确的动力学数据,推动了强场原子分子物理研究的快速发展.本文结合北京大学新建的冷靶反冲离子动量谱仪,介绍全微分符合测量技术在强场原子分子物理实验研究中的重要应用以及在强场原子分子物理实验研究方面取得的一些重要进展.  相似文献   

18.
本文运用Newman—Penrose方法推出deSitter度规下的自旋系数,讨论了经典场的渐近特性,给出平凡解.并得到deSitter空间中场方程一般可化为Liouville型方程.  相似文献   

19.
Dial OE  Ashoori RC  Pfeiffer LN  West KW 《Nature》2007,448(7150):176-179
Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunnelling, yield measurements of the 'single-particle' density of states spectrum of a system. This density of states is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy, and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proved difficult to probe spectroscopically. Here we present an improved version of time-domain capacitance spectroscopy that allows us to measure the single-particle density of states of a 2DES with unprecedented fidelity and resolution. Using the method, we perform measurements of a cold 2DES, providing direct measurements of interesting correlated electronic effects at energies that are difficult to reach with other techniques; these effects include the single-particle exchange-enhanced spin gap, single-particle lifetimes in the quantum Hall system, and exchange splitting of Landau levels not at the Fermi surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号