首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel, and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the orthopyroxenes have high XMg and Al2O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around -56.7℃, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the Altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3-23.8℃ translating into CO2 densities of the order of 0.86-0.88g/cm^3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions.  相似文献   

2.
Zircon chronology and REE geochemistry of granulite xenolith at Hannuoba   总被引:10,自引:0,他引:10  
The lower crustal xenolith of mafic two-pyroxene granulite (the majority) and hypersthene granulite in the Cenozoic basalt at Hannuoba have the characteristics of igneous blastic structure and granulite facies metamorphic recrystallization. Study on the zircon chronology and REE geochemistry of granulite xenolith shows that the underplating of basic magma into the lower crust during late Mesozoic led to the formation of mafic accumulate, which further through metamorphism of granulite facies formed the high-density and high-velocity crustal bottom layer at the lower crust. This suggests that the underplating of mantle magma is the important way for the vertical overgrowth of continental crust since the Phanerozoic and provides new evidence for crust-mantle interaction.  相似文献   

3.
Based on detailed studies on the compositional zoning of garnet and biotite in pelitic rocks from the Jingshan group of granulite facies in north Jiaodong, P-T pseudosections with isopleths of Fe/(Fe + Mg) in garnet and biotite were calculated in the KF-MASH system for two representative rocks of sillimanite-garnet-cordierite-biotite gneiss ( Vbi/ Vg>1 ) and sillimanite-garnet gneiss (Vbi/ Vg<0.2) using the software THERMOCALC and the internally consistent thermodynamic dataset. With a comparison of the calculated Fe/(Fe+ Mg) values in garnet and biotite in the peak P-T fields constrained by peak mineral assemblages with the measured ones, it is concluded that the coarse garnet crystals with diffusion zoning from high grade meta-pelites can preserve their peak compositions even when they have experienced a cooling event, and that biotite crystals surrounded by fetsic minerals in biotite-rich rocks with Vbi/Vg> 1 can nearly preserve their peak compositions, and biotites in garnet-rich rocks with Vbi/Vg<0. 2 cannot preserve their peak compositions due to the influence of grain-boundary fluid.  相似文献   

4.
The northern margin of the North China Craton (NCC), located between the Paleo-Asian Ocean tectonic region on the north and the NCC on the south, is a key region for studying the tectonic evolution of NCC. A Pre-cambrian retrograded eclogite (2500 Ma or 1800 Ma) was reported in Baimashi near Hengshan Mountain in the NCC, which is characterized by the vermicular symplec-tite of diopside and plagioclase with absence of ompha-cite[1,2]. In Hongqiyingzi Group from the middle part of the …  相似文献   

5.
The basic granulite, which is considered to be the MORE based on geochemistry and isotopic characteristics[1], has been discovered recently as the enclaves in the Yingjiang island-arc magmatic suite on the border of Burma and west Yunnan, east of Myitkyina suture in the eastern Burma. The laser micro-area 40Ar-39Ar technique is used to date the age of garnet and cliopyroxene that is the result of the early metamorphic event. The isochron outcome is -74.4 Ma which is induced to be the age of the suduction event of the Myitkyina oceanic crust on the basis of the Cenozoic lithosphere tectonic evolution, tectonic thermal events and the age of deformation and metamorphism. The discovery of the high-grade or high-pressure metamophic rocks in the island-arc magmatic suite by the way of studying its P-T-t paths can provide a good way to study the age and process of oceanic crust subduction, slab break-off, metamorphic terrain exhumation and the evolution of paleoocean basin.  相似文献   

6.
丹巴地区位于川西松潘-甘改造山带东缘,出露较多的斜长角闪岩类。这些岩石通常呈透镜状与碳酸盐岩,泥质岩相伴生。地球化学研究表明,这类斜长角闪岩为正斜长角闪的岩主要为钙碱性玄武岩类。  相似文献   

7.
Zircon SHRIMP U-Pb dating was carried out for an intermediate granulite xenolith in Cenozoic alkali basalt from Nushan. The results suggest that the lower crust beneath Nushan may have formed at about 2400—2200 Ma, and have been subjected to granulite-facies metamorphism at 1915 27 Ma. The old age of the Nushan lower crust is consistent with the geochemical similarities between Nushan granulite xenoliths and Archean-Paleoproterozoic granulite terrains in the North China craton, but it is not distinguishable from high-grade metamorphic rocks in the Yangtze craton where such old ages were also reported. Significant Pb-loss occurs in the Nushan zircons, implying important influence of widespread Mesozoic to Cenozoic underplating in East China on the lower crust beneath Nushan.  相似文献   

8.
Bjørnerud MG  Austrheim H 《Nature》2006,440(7082):E4; discussion E4-E4; discussion E5
The mechanisms by which mafic rocks become converted to denser eclogite in the lower crust and mantle are fundamental to our understanding of subduction, mountain building and the long-term geochemical evolution of Earth. Based on larger-than-expected gradients in argon isotopes, Camacho et al. propose a new explanation--co-seismic injection of hot (700 degrees C) aqueous fluids into much colder (400 degrees C) crust--for the localized nature of eclogite metamorphism during Caledonian crustal thickening, as recorded in the rocks of Holsn?y in the Bergen arcs, western Norway. We have studied these unusual rocks, which were thoroughly dehydrated under granulite facies conditions during a Neoproterozoic event (about 945 million years (945 Myr) ago); we also concluded that fracture-hosted fluids were essential as catalysts and components in the conversion to eclogite about 425 Myr ago. However, we are sceptical of the assertion by Camacho et al. that eclogite temperatures were reached only in the vicinity of fluid-filled fractures. Determining whether these rocks were strong enough to fracture at depths of 50 km because they were cold or because they were very dry is crucial to understanding the mechanics of the lower crust in mountain belts, including, for example, the causes of seismicity in the Indian plate beneath the modern Himalayas.  相似文献   

9.
Discovery of the eclogite and its petrography in the Northern Dabie Mountain   总被引:24,自引:0,他引:24  
Eclogite from the Northern Dabie Mountain is a new finding by the authors. These eclogites in foliated perdotite are enveloped by banded gneiss and occur in the mafic-ultramafic rock belt. They are mainly composed of omphacite, garnet, diopside, orthopyroxene, amphibole, plagioclase and magnetite, and a small amount of rutile, spinel, olivin and 鏾rundum. The mineral association of peak metamorphism of the eclogite is omphacite+garnet+rutile. The existence of eclogite in the Northern Dabie Mountain implies that there was an eclogitic metamorphism prior to the granulitic facies one in the mafic-ultramafic rock belt.  相似文献   

10.
Two metamorphic processes, i.e. subsolidus dehydration and partial melting occurring in MORB, metasediments and peridotite of subducted oceanic lithosphere are discussed on the basis of available experimental work and phase equilibrium modeling. Phase diagrams of hydrous MORB show that in most cold subduction P-T (pressure-temperature) regimes a large portion of water in the basic layer has released below the onset of blueschist facies (〈 20 km), and at a depth (60--70 km) of transition from lawsonite blueschist to lawsonite eclogite facies through glaucophane dehydration; only a smaller portion of water will escape from the slab through dehydration of lawsonite and chloritoid in the depth range suitable for arc magma formation; and a very small portion of water stored in lawsonite and phengite will fade into the deeper mantle. The role of amphibole for arc magma formation is still arguable. In cold subduction P-Tregimes, the dehydration of chlorite and talc in AI-poor metasediments, and chloritoid and carpholite in AI-rich metapelites at a depth around 80--100 km will make some con- tributions to the formation of arc magma. Comparatively, dehydration of serpentine in hydrated peri- dotite occurs at depths of 120--180 km, playing an important role in the arc magmatism. Subduction of oceanic crust along warm P-T regimes will cross the solidi at a depth over 80 km, resulting in partial melting under fluid-saturated and fluid-absent conditions in the metasediments involving biotite and phengite, and in the basic rocks involving epidote and amphibole. The melt compositions of the basic crust are adakitic at pressures 〈 3.0 GPa, but become peraluminous granitic at higher pressures.  相似文献   

11.
The petrochemical as well as zircon U-Pb and Lu-Hf isotopic studies of granulite facies metamorphic rock from the Tao'xi Group in eastern Nanling Range, Central Cathaysia indicate that its protolith is the sedimentary rock with low maturation index. The clastic materials are mostly from middle Neoproterozoic (-736 Ma) granitoid rocks with minor Neoarchaean and Paleoproterozoic rocks. The timing of this Neoproterozoic magmatism is in agreement with the second period of magmatism widespread surrounding the Yangtze Block. Hf isotopic data indicate that the Neoproterozoic granitoids resulted from the recycled Paleoproterozoic mantle-derived crustal materials. The sedimentary rock was deposited in Late Neoproterozoic Era, and carried into low crust in Early Paleozoic. The partial melting of the meta-sedimentary rock took place at about 480 Ma and subsequently granulite facies metamorphism occurred at ca. 443 Ma. The zircons forming during this time interval (Early Paleozoic) show large Hf isotope variations, and their ZHf(t) values increase from -13.2 to +2.36 with decreasing age, suggesting the injection of mantle-derived materials during partial melting and metamorphism processes in the Early Paleozoic. Calculation results show that this metamorphic rock, if evolved to Mesozoic, has similar isotopic composition to the nearby Mesozoic high Si peraluminous granites, implying that this kind of granulite facies metamorphic rock is probably the source material of some Mesozoic peraluminous granitoids in eastern Nanling Range.  相似文献   

12.
Four rock assemblages in correspondence with two different tectonic settings have been recognized in the NEE-SWW extending HP-UHP metamorphic belt in southwestern Tianshan, northwest China. Eclogite assemblage EC1 is geochemically akin to alkaline within-plate oceanic island basalt (OIB). EC2 shows affinity to enriched mid-oceanic ridge basalt (EMORB). Rare earth element (REE) and other immobile trace element characteristics of blueschist assemblage BS1 resemble those of normal mid-oceanic ridge basalt (NMORB). These three assemblages are likely formed on a seamount setting, and the prevalent presence of carbonate minerals and omphacite quartzite stripes/gobbets suggests ancient pelagic sediments including marls are probably developed upon the basaltic seamount. Whereas the geochemical characteristics of BS2 assemblage are of volcanic arc basalt-type. The seamount with the pelagic sediments on it is brought into the subduction zone, and volcanic arc basalts formed on the active continental margin and trench sediments are eroded and enwrapped in the subducting mass, they are altogether subjected to high to ultrahigh pressure metamorphism and subsequent exhumation towards surface. The HP-UHP metamorphic belt is thus interpreted as a subduction-accretionary complex formed by tectonic juxtaposition and imbrication of seamount, seafloor, trench and volcanic arc sequences during oceanic crust subduction.  相似文献   

13.
The thermal structure of the crust strongly influences deformation, metamorphism and plutonism. Models for the geothermal gradient in stable crust predict a steady increase of temperature with depth. This thermal structure, however, is incompatible with observations from high-temperature metamorphic terranes exhumed in orogens. Global compilations of peak conditions in high-temperature metamorphic terranes define relatively narrow ranges of peak temperatures over a wide range in pressure, for both isothermal decompression and isobaric cooling paths. Here we develop simple one-dimensional thermal models that include the effects of melt migration. These models show that long-lived plutonism results in a quasi-steady-state geotherm with a rapid temperature increase in the upper crust and nearly isothermal conditions in the middle and lower crust. The models also predict that the upward advection of heat by melt generates granulite facies metamorphism, and widespread andalusite-sillimanite metamorphism in the upper crust. Once the quasi-steady-state thermal profile is reached, the middle and lower crust are greatly weakened due to high temperatures and anatectic conditions, thus setting the stage for gravitational collapse, exhumation and isothermal decompression after the onset of plutonism. Near-isothermal conditions in the middle and lower crust result from the thermal buffering effect of dehydration melting reactions that, in part, control the shape of the geotherm.  相似文献   

14.
Hengshan granulite facies terrane consists of tonalite-trondhjemite-granodiorite(TTG)gneisses and minor high-pressure mafic granulite blocks.LA-ICP-MS zircon dating for two TTG gneiss samples indicates metamorphic ages of 1916.7±9.9 Ma and1850–1930 Ma,and magmatic protolith age of ca.2.5 Ga,with similar HREE-rich patterns.Phase equilibria modelling in ZrO2-bearing system reveals that zircon abundance varies inversely with melt abundance in suprasolidus metamorphism,zircon growth occurs with melt crystallization during cooling,and thus,the newly grown zircon can only record the age of retrograde metamorphism.Consequently,we suggest that the Hengshan granulite facies terrane experienced slowly uplifting and cooling during 1.85–1.93 Ga in an extensional setting under middle-crust,while the collision orogeny corresponding to peak stage of high-pressure granulite may have happened much earlier.  相似文献   

15.
Evolution of the Archaean crust by delamination and shallow subduction   总被引:12,自引:0,他引:12  
Foley SF  Buhre S  Jacob DE 《Nature》2003,421(6920):249-252
The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle.The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.  相似文献   

16.
The eclogites from the Altyn Tagh, northwestern China have been subjected to mediumtemperature and high-pressure metamorphism, and then overprinted by the amphibolite to granulite facies retrograde metamorphism. A complex compositional zoning was well preserved in the garnet porphyroblast formed during the metamorphism of eclogite facies. This zoning recordedP-T path of multistage metamorphism, and an early retrogressive process with features of decreasing pressure and increasing temperature. This evidences a short residence time for the eclogite at peak metamorphism and early retrogression, and thus rapid tectonic uplift history.  相似文献   

17.
Gao  LiE  Zeng  LingSen  Xie  KeJia 《科学通报(英文版)》2012,57(6):639-650
Determination of the timing and geochemical nature of early metamorphic and anatectic events in the Himalayan orogen may provide key insights into the physical and chemical behavior of lower crustal materials during the early stage of tectonic evolution in large-scale collisional belts.The Yardoi gneiss dome is the easternmost dome of the North Himalayan Gneiss Domes(NHGD),and contains three types of amphibolites with distinct mineral assemblage,elemental and radiogenic isotope geochemistry,as well as various types of gneisses.SHRIMP zircon U/Pb analyses on the garnet amphibolite and garnet-bearing biotite granitic gneiss yield ages of nearly peak metamorphism at 45.0±1.0 Ma and 47.6±1.8 Ma,respectively,which are 2 to 4 Ma older than the age for partial melting in migmatitic garnet amphibolite(43.5±1.3 Ma).Available data have demonstrated that ultra-high pressure metamorphism in the Tethyan Himalaya occurred at ~55 Ma,and high amphibolite facies to granulite facies metamorphism at 45 to 47 Ma.In addition,partial melting at thickened crustal conditions occurred at 43.5±1.3 Ma,which led to the formation of high Sr/Y ratios two-mica granites.The high-grade metamorphic rocks in the NHGD may represent the subducted front of the Indian continental lithosphere.In large collisional belts,fertile components in crustal materials could melt and form granitic melts with relatively high Na/K and Sr/Y ratios under thickened crustal conditions,significantly different from those formed by decompressional melting during rapid exhumation.  相似文献   

18.
The granodiorite-tonalite rock occurred in ophiolitic melange was discovered in Buqingshan area, Qinghai Province. Its Rb-Sr isochron age is 578.15 ± 54.4 Ma which belongs to Early Paleozoic. The rock, belonging to calcic-alkaline series, has the features of island-arc granite, which hints that oceanic crust subduction and island-arc magmatism occurred in this area in Early Paleozoic. This discovery is of great significance to recognize the tectonic framework and evolution of this area even as far as the Central Orogenic Belt.  相似文献   

19.
内蒙古乌拉特中旗温更地区发育了一套由角闪辉长岩和橄榄辉长岩组成的混杂堆晶岩系,主要造岩矿物为橄榄石、辉石、斜长石及角闪石等。电子探针数据分析表明,角闪辉长岩中的辉石为透辉石区,而斜长石An平均为86,属倍长石。这些岩石表现为大离子亲石元素(LILE)K,Rb,Sr,Ba明显富集,高场强元素(HFSE)Nb,Ta,Zr相对亏损。根据Al2-TiO2,Wo-En-Fs以及An-Mg′图解,结合其微量元素地球化学特征可以判断角闪辉长岩类形成于岛弧环境。橄榄辉长岩中橄榄石Fo平均为74,属贵橄榄石,斜长石An平均为80,属倍长石,辉石全部落入顽辉石区。这些岩石表现了贫SiO2高MgO,富集大离子亲石元素K,Rb,Sr,Ba和轻稀土(LREE),个别高场强元素Nb亏损,兼具大洋中脊与岛弧的特征。根据Wo-En-Fs以及An-En图解推测橄榄辉长岩产于弧后盆地环境。温更混杂辉长岩的形成与古亚洲洋板块的俯冲消减作用有关,是研究古亚洲洋演化历史的一个重要岩石学标志。  相似文献   

20.
The geological characteristics of ultrahigh-pressure (UHP) metamorphic belts formed by deep subduction of oceanic crust are summarized in this paper. Oceanic-type UHP metamorphic belt is characterized by its protolithlc assemblage of typical oceanic crust, the peak metamorphic temperature 〈600℃, P-T path undergoing blueschist facies during prograde and retrograde metamorphic evolution, reepectively, with low geothermal gradient of cold subduction. The further study of oceanic-type UHP metamorphic belt is very significant for constructing metamorphic reaction series of cold subduction zone, for understanding how aqueous fluids were transported into deep mantle and for classifying the types of UHP metamorphism in cold subduction zone. The uplift and exhumation mechanism of oceanic UHP metamorphic rocks is one of the most challenging problems in the study of UHP metamorphism, which is very important for understanding the geodynamic mechanism of solid Earth. As a traveler eubducted into the mantle depth end then uplifted to the surface, oceanic-type UHP metamorphic belts witness the bulk process from the subduction to exhumation and is an ideal target to study the geochemical behavior end cycling of elements in subduction zones. The tectonic evolution of one convergent orogenic belt can be usually divided into two stages of oceanic subduction and followed continental subduction and collision, and the two best-established examples of orogenic belts are Alpa and Himalaya. Therefore, the study of oceanic-type UHP metamorphic belt is the frontier of the current plate tectonic theory. As two case studies, the current status and existing problems of oceanic-type UHP metamorphic belts in Southwest Tianshan and North Qaidam, NW China, are reviewed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号