首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
一、行星成员包括水星、金星、地球、火星、木星、土星、天王星和海王星。定义:围绕太阳运转,自身引力足以克服其刚体力而使天体呈圆球状,并且能够清11除其轨道附近其他物体的天体。二、矮行星成员包括冥王星和谷神星等。定义:与行星同样具有足够的质量,呈圆球状,但不能清除其轨道附近其他物体的天体。三、太阳系小天体定义:围绕太阳运转但不符合行星和矮行星条件的物体。太阳系“新家谱”  相似文献   

2.
一、海王星与冥王星是怎样发现的1. 太阳系家族:在太阳周围,有九个较大的行星(小行星数目较多)围绕着太阳运转。它们是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。如图(一)所示。(最近资料表明土星和天王星之间有可能存在第十颗大行星)。所有这些行星,都沿着同一方向(即所谓顺向)围绕太阳运动,其轨道成椭圆形,极近于圆。其质量大小不一,但所有行星的质量总共只有太  相似文献   

3.
特洛伊小天体与行星同享一个轨道,并与太阳、行星在空间构成等边三角形,最早为人们所知的特洛伊小天体是位于木星轨道上并位于木星前(后)方60°的两群小天体.而海王星特洛伊小天体则是近20年来太阳系内最重要的发现之一.观测证据表明海王星特洛伊小天体的总数量和总质量远超过木星特洛伊小天体和主带小行星,是太阳系内仅次于柯伊伯带的第二大小天体集群.它们一方面具有独特的轨道特征,另一方面又联系着海王星轨道内、外的空间,自然而然地成为检验太阳系起源与演化的试金石.我们简要介绍了对海王星特洛伊小天体的观测结果、对它们的轨道动力学和起源研究的进展.  相似文献   

4.
假设的天体     
在火星和木星轨道之间,或者在水星轨道的内侧,曾预言存在着未被发现的行星,人们曾经还认真地去探寻过。虽然最终结果证明这些只不过是“幻想”,但毋庸置疑,正是人类对未知天体的不断探求,使天文学发展到了今天这个样子。现在人们又预言,也许在海王星外侧的遥远处还有未知的行星等待着我们去发现;或许太阳并不是“独生子”,而是有自己的兄弟姐妹的。旧的预言被证实或证伪了,新的预言又产生了,让我们来看看那些不断探寻未知天体的天文学历程吧。  相似文献   

5.
国际新闻     
日推测太阳系可能存在未知行星日本神户大学行星科学研究中心某研究小组通过计算发现,在海王星的外侧很可能存在未知行星。如果这个天体  相似文献   

6.
<正>此前,太阳系内只有4颗气态行星(外行星)有环状结构,分别是木星、土星、天王星和海王星。如今,天文学家们又发现,在海王星轨道之外的一颗矮行星——妊神星,也有环状带。该结果已于2017年10月11日发表在Nature上。在太阳系外沿有很多小型天体。渐渐地,人们意识到这些天体并非都是又小又黯淡,某些天体的体积甚至可与冥王星相当。于是,在2006年,天文学家定义了一类新的行星——矮行星。妊神星是继冥王星、谷神星、阋神星、鸟神星之后发现的第5颗矮行星。其形状宛如橄榄,自转速度极快,有两颗卫星,一直以来格外吸引天文学家的目光。"环状带的形成原因实在太多了,有可能是在与其他天体碰撞时产生的,也可能是妊神星本身的自转速度太快造成  相似文献   

7.
位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。经过天文学界多年的争论以及第26届国际天文学联合会大会上数天的争吵,冥王星终于“惨遭降级”,被驱逐出了行星家族。从此之后,这个游走在太阳系边缘的天体将只能与其他一些差不多大的“兄弟姐妹”一道被称为“矮行星”。根据国际天文学联合会大会8月24日通过的新定义,“行星”指的是围绕太阳运转、自身引力足以克服其刚体力而使天体呈圆球状、并且能够清除其轨道附近其他物体的天体。按照新的定义,太阳系行星将包括水星、金星、地球、火星、木星、土星、天王星和海王星8…  相似文献   

8.
<正>终于,我们谈到太阳系中离太阳最遥远的两个行星:天王星、海王星。这两个行星离太阳有多远?地球离太阳的平均距离约为1亿5千万千米,天王星离太阳的平均距离约为地球离太阳的平均距离的19倍,而海王星的约为30倍。天王星、海王星可以说是"姊妹星",从大小、"相貌"到主要组成物质都很像。它们体积相当,质量差别不大,约为地球质量的十几倍。它们都吸引不少"追星族"——卫  相似文献   

9.
鉴于无法找到描述Kuiper带天体动力学演化的分析解,本文采用数值模拟的方法,即通过数值积分,得到由太阳、海王星和Kuiper带天体组成的限制性三体问题中Kuiper带天体随时间演化的数值解.结果表明,经长期演化后,共振带中的一些天体的偏心率明显被激励;Kuiper带天体的轨道偏心率和倾角的激励程度和天体的初始轨道半长径、偏心率、倾角有关.  相似文献   

10.
由日本、新西兰等11个国家的专家组成的国际联合观测研究小组日前发表报告称,他们发现了两颗气态行星围绕一颗恒星运行的天体系统,在迄今发现的天体系统中。该系统结构与太阳系最为相似。研究发现,该恒星的质量和两颗行星的轨道半径及其质量,恰好相当于太阳、木星和土星三者的质量与轨道关系同比缩小约一半。参与研究的日本名古屋大学教授伊藤好孝等认为宇宙中与太阳系相似的天体系统并不罕见.这或许将成为探索太阳系外行星的线索。  相似文献   

11.
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47?days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.  相似文献   

12.
After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2M(Jupiter)) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung-Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.  相似文献   

13.
Deming D  Seager S  Richardson LJ  Harrington J 《Nature》2005,434(7034):740-743
A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.  相似文献   

14.
Israelian G  Santos NC  Mayor M  Rebolo R 《Nature》2001,411(6834):163-166
Current models of the evolution of the known extrasolar planetary systems need to incorporate orbital migration and/or gravitational interactions among giant planets to explain the presence of large bodies close to their parent stars. These processes could also lead to planets being ingested by their parent stars, which would alter the relative abundances of elements heavier than helium in the stellar atmospheres. In particular, the abundance of the rare 6Li isotope, which is normally destroyed in the early evolution of solar-type stars but preserved intact in the atmospheres of giant planets, would be boosted substantially. 6Li has not hitherto been observed reliably in a metal-rich star, where metallicity refers to the total abundance of elements heavier than helium. Here we report the discovery of 6Li in the atmosphere of the metal-rich solar-type star HD82943, which is known to have an orbiting giant planet. The presence of 6Li can probably be interpreted as evidence for a planet (or planets) having been engulfed by the parent star.  相似文献   

15.
Brogi M  Snellen IA  de Kok RJ  Albrecht S  Birkby J  de Mooij EJ 《Nature》2012,486(7404):502-504
The giant planet orbiting τ Bo?tis (named τ Bo?tis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Bo?tis b. At a spectral resolution of ~100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5°?±?1.5° and a mass 5.95?±?0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Bo?tis b by the ultraviolet emission from the active host star.  相似文献   

16.
There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation.  相似文献   

17.
Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.  相似文献   

18.
Konacki M 《Nature》2005,436(7048):230-233
Hot Jupiters are gas-giant planets orbiting with periods of 3-9 days around Sun-like stars. They are believed to form in a disk of gas and condensed matter at or beyond approximately 2.7 astronomical units (au-the Sun-Earth distance) from their parent star. At such distances, there exists a sufficient amount of solid material to produce a core capable of capturing enough gas to form a giant planet. Subsequently, they migrate inward to their present close orbits. Here I report the detection of an unusual hot Jupiter orbiting the primary star of a triple stellar system, HD 188753. The planet has an orbital period of 3.35 days and a minimum mass of 1.14 times that of Jupiter. The primary star's mass is 1.06 times that of the Sun, 1.06 M(\circ). The secondary star, itself a binary stellar system, orbits the primary at an average distance of 12.3 au with an eccentricity of 0.50. The mass of the secondary pair is 1.63 M(\circ). Such a close and massive secondary would have truncated a disk around the primary to a radius of only approximately 1.3 AU (ref. 4) and might have heated it up to temperatures high enough to prohibit giant-planet formation, leaving the origin of this planet unclear.  相似文献   

19.
流体模拟的研究表明,如果多颗行星形成在环绕双星的气体盘中,行星之间的会聚迁移会导致行星之间的散射.本文系统研究了环双星的行星系统中两颗等质量行星(P型行星)之间的散射,目的是探讨散射对P型行星系统构型的影响.数值模拟的研究表明散射后只剩一颗行星的几率最大,一般80%.从某种意义上说,伴星的存在有利于行星的存活,尤其是在靠近双星的地方.我们发现散射会导致行星的向外迁移,这和单恒星系统中的散射现象相反,此现象可以用来解释最近通过成像方法发现的远距离P型行星.即便对于等质量的行星,散射位置的不同会造成偏心率分布的多样性.在靠近双星的位置,幸存行星的偏心率较小;在远离双星的位置,剩余行星的偏心率较大.此外,P型行星之间的散射可使P型行星转变为围绕一颗主星运行的S型行星.  相似文献   

20.
Alves JF  Lada CJ  Lada EA 《Nature》2001,409(6817):159-161
Stars and planets form within dark molecular clouds, but little is understood about the internal structure of these clouds, and consequently about the initial conditions that give rise to star and planet formation. The clouds are primarily composed of molecular hydrogen, which is virtually inaccessible to direct observation. But the clouds also contain dust, which is well mixed with the gas and which has well understood effects on the transmission of light. Here we use sensitive near-infrared measurements of the light from background stars as it is absorbed and scattered by trace amounts of dust to probe the internal structure of the dark cloud Barnard 68 with unprecedented detail. We find the cloud's density structure to be very well described by the equations for a pressure-confined, self-gravitating isothermal sphere that is critically stable according to the Bonnor-Ebert criteria. As a result we can precisely specify the physical conditions inside a dark cloud on the verge of collapse to form a star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号