首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
应力敏感作用对低渗透储层的渗流有重要的影响。为了明确微裂隙低渗透储层的应力敏感特征,首先分析了储层的变形机理;然后通过改变孔隙压力实验,模拟测定微裂隙低渗透储层的应力敏感特征;最后分析了应力敏感对生产的影响。研究表明:超低渗透研究区微裂隙比较发育,使其储层砂岩具有应力敏感特征;渗透率模数能够较好的描述研究区的介质变形特征;孔隙压力降低,超低渗透岩心渗透率下降幅度远远高于其它各类储层岩心,表明油藏开发过程中,超低渗储层介质变形非常严重。随着生产压差增大,超低渗介质变形油藏单井产能随之增加,油井开采过程中,选择合理的生产压差是减小介质变形对油井产能造成伤害的关键。  相似文献   

2.
低渗透油藏具有孔隙度小、非均质级差大、敏感性强等特征,注水开采效果差异较大。本研究开展室内长岩心高速注水实验,探究不同储层物性及敏感性对采出程度和压力传导的影响。结果表明:岩心渗透率越低,高速注水效果越明显,低渗岩心注入端压差是高渗岩心的8.5倍,采出程度是其1.04倍;裂缝的存在会导致蓄能效果下降,裂缝长度占比从12.5%上升到37.5%,最终采出程度降低4.5%,蓄能效果降低26%;水敏越强的岩心在低矿化度注入水的注入能力变低,使驱替压差大幅提高,但采出程度相比无水敏时降低21.5%;注水速度越高对岩心的采出程度和采油速率提高的越显著,高速注入压力为低速注入的2.5倍,注采压差为低速注入的6倍以上,注水速度存在最佳值为1.5mL/min。该研究结果对低渗油藏注水开发生产具有重要指导意义。  相似文献   

3.
CO_2驱是提高超低渗油藏采收率的有效方法之一,然而,目前对CO_2在超低渗油藏中的驱油机理认识还不完善。针对西部某超低渗透油藏开发过程中注水矛盾问题,通过物理模拟实验,研究了CO_2驱对该超低渗透油藏的适应性,并通过对比不同的CO_2注入方式和注入参数对驱油效率的影响规律,优选出超低渗透油藏CO_2驱最佳注入参数。实验结果表明:对该超低渗透裂缝性油藏,周期注气方式下驱油效果最佳,且当注入段塞为0.06 PV,注气与焖井时间比为1∶2时延缓气窜的效果最好,驱油效率达到60%以上。研究结果为该类型超低渗油藏现场注气开发设计提供指导作用。  相似文献   

4.
CO_2驱是提高超低渗油藏采收率的有效方法之一,然而,目前对CO_2在超低渗油藏中的驱油机理认识还不完善。针对西部某超低渗透油藏开发过程中注水矛盾问题,通过物理模拟实验,研究了CO_2驱对该超低渗透油藏的适应性,并通过对比不同的CO_2注入方式和注入参数对驱油效率的影响规律,优选出超低渗透油藏CO_2驱最佳注入参数。实验结果表明:对该超低渗透裂缝性油藏,周期注气方式下驱油效果最佳,且当注入段塞为0.06 PV,注气与焖井时间比为1∶2时延缓气窜的效果最好,驱油效率达到60%以上。研究结果为该类型超低渗油藏现场注气开发设计提供指导作用。  相似文献   

5.
了解和掌握低渗-特低渗油藏的相对渗透率和水驱油规律,对于准确认识该油田区块流体渗流特征,合理、高效开发油田有着十分重大的意义。以鄯善油田特低渗储层为例,通过室内岩心实验,分析了不同因素对于低渗-特低渗油藏的油水相对渗透率和水驱油效率的影响。结果表明:岩心渗透率、原油粘度的变化都会影响低渗-特低渗油藏的油水相对渗透率曲线特征。同时,低渗-特低渗油藏的水驱油效率也会随着岩心渗透率、驱替速度和原油粘度的变化而变化。  相似文献   

6.
 针对超低渗透油藏普遍发育微裂缝、导致储层非均质性强的特点,开展了裂缝型岩心的制作和不同组合方式下的超低渗透油藏天然能量开采的物理模拟实验。基质与裂缝型岩心并联水驱油实验模拟不同非均质性储层油藏产水规律。实验结果表明,非均质储层含水上升曲线分为无水采油期、含水上升期和高含水上升期、高含水期4个阶段。含水上升规律主要受储层平均渗透率、渗透率级差、微裂缝发育特征和含水层能量的影响。对于非均质性较强的超低渗透油藏,应重点关注较高渗透率储层、水层和裂缝较发育储层的含水上升变化特征。  相似文献   

7.
 对于具有应力敏感的裂缝性油藏,在开发过程中因地层压力下降导致基质与裂缝体积缩小,渗流能力降低.如何有效抑制这种油藏特性对开发效果和最终采收率的影响,是制定裂缝性油藏开发策略的关键.本文以渤海某裂缝性油藏为例,对应力敏感与注水时机及地层压力保持水平之间的密切关系进行分析和研究.结果表明:在不考虑应力敏感时,裂缝性油藏合理注水时机为地层压力降至饱和压力时实施注水;在考虑应力敏感时,裂缝性油藏合理注水时机由应力敏感程度决定.当油藏压力降至饱和压力处渗透率保留率在80%以上时,注水时机为地层压力降至饱和压力时实施注水.否则,必须在原始地层压力实施注水.同时,裂缝性油藏合理地层压力保持水平应该维持合理注水时机下的地层压力不变,但考虑到后期提液、打井等挖潜措施及综合调整的实施,可根据实际情况适当提高.  相似文献   

8.
为了评价应力敏感对微裂缝超低渗透储层渗流的影响,采用微波炉加热方法,制备热应力微裂缝超低渗岩心(钻井取心很难取到微裂缝岩心),近似模拟实际成岩、沉积过程中形成的微裂缝;通过微裂缝岩心的应力敏感性室内实验,进行应力敏感性评价。结果表明:制造的微裂缝能够近似地模拟地层在成岩、沉积过程中形成的微裂缝;微裂缝岩心的渗透率应力敏感滞后程度不明显,应力卸载后渗透率恢复程度高,不存在强应力敏感;对岩石进行应力敏感性评价时,应以地层压力条件下的渗透率为初值,否则会夸大岩石的应力敏感性;在微裂缝低渗透岩心中,随着微裂缝所占导流能力的增加,微裂缝岩心的渗透率滞后恢复程度越高;应力敏感性对微裂缝超低渗储层的产能影响很小。  相似文献   

9.
相对渗透率曲线是油藏数值模拟的关键参数。超低渗透储层致密,喉道细小,孔隙结构非常复杂,在水驱油实验过程中,毛管压力作用和末端效应非常显著。在超低渗储层水驱油实验的基础上,首先应用传统的JBN方法(忽略毛管压力的影响)计算相对渗透率,发现其是不适用的。为了克服岩心末端效应的影响,应用X-ray CT扫描技术获得含水饱和度剖面数据;并结合两相饱和度剖面理论,推导了一种计算两相相对渗透率的新方法。结果表明:应用模型计算的相对渗透率曲线能够反映超低渗储层毛管压力大的特征。超低渗透岩心的水相渗透率起初上升很慢,随后快速升高;而油相渗透率下降迅速。研究成果对于超低渗储层两相相对渗透率的计算具有重要意义。  相似文献   

10.
特低渗透油藏水驱油特征实验研究   总被引:6,自引:0,他引:6  
针对特低渗—超低渗油层渗流特点,选取西峰油田长8油层21块岩心,通过室内水驱油实验研究,分析了低渗透油层驱油效率与储层渗透率的关系,驱油效率与注水倍数的关系,以及驱油效率与驱替压力梯度的关系.研究结果表明,低渗透油层在渗透率较低的范围内,随渗透率的降低,驱油效率则急剧降低;随注水倍数的增加,各含水阶段驱油效率增加的幅度不同,消耗的注水量也不同;随着驱替压力梯度的提高,驱油效率均呈上升趋势.  相似文献   

11.
变形介质低渗透油藏油井真实产能计算与分析   总被引:7,自引:0,他引:7  
基于变形介质带启动压力梯度低渗透油藏稳定渗流理论,研究了低渗透油井增产措施后稳定生产的真实压力分布与产能分析方法.研究结果表明低渗透油藏油井渗流场的真实压力分布具有分区域特征;在具有变形介质特征的低渗透油藏中,油井的产能随启动压力梯度和介质变形系数增大而降低,随增产激活半径和激活系数的增大而增加,随生产压差的增大而增加;同时油井产能指数随生产压差增大呈非单调增曲线,因此对于低渗透油井生产而言,存在合理生产压差与最小生产压差.同时,沿用同一思路对超低渗透油藏开发的有效途径进行了探讨.认为提高增产激活半径是显著提高超低渗透油藏产能的有效方法.理论计算结果表明,只有在增产激活半径大于60m(渗透率越低,该值越大)时油井的产能才会得到大幅度提高.因此,寻求深穿透的油井改造措施或采用水平井开采技术,将是超低渗透油藏开发的有效方法.  相似文献   

12.
低渗透油藏油水两相启动压力梯度变化规律研究   总被引:5,自引:0,他引:5  
低渗油藏单相渗流启动压力梯度目前已进行了大量研究,但油水两相启动压力目前研究很少,没有明确的结论.较系统地研究了两相启动压力梯度产生原因及变化规律,从启动压力梯度定义出发研究了两相启动压力梯度的测定方法.用胜利油田天然低渗岩心测定了不同渗透率岩心油水两相启动压力梯度与含水饱和度的关系,通过数据回归建立了油水两相启动压力梯度与渗透率、饱和度之间的经验关系式.实验结果表明:油水两相同时渗流时,两相的启动压力梯度相等,随含水饱和度的增加而呈线性降低的趋势,并且渗透率越低的岩心,降低的趋势越明显.建立了根据岩石的物性预测研究区块两相启动压力梯度的经验方法.  相似文献   

13.
长庆超低渗砂岩储层可动流体实验   总被引:3,自引:0,他引:3  
 评价超低渗砂岩储层渗流能力及开发潜力时,可动流体及其赋存特征是重要参考因素之一。利用核磁共振测试实验及离心实验,对长庆油田的6块超低渗砂岩储层岩样进行离心标定,定量分析了不同尺寸喉道控制的可流动孔隙空间大小,结果表明,对于长庆超低渗储层砂岩,以往低渗储层砂岩离心法所用的经验值1.38MPa已不再适用,最佳离心力应为2.07MPa;有效喉道半径下限为0.07μm,T2截止值为12.47ms。将实验结果与长庆油田的另外3块特低渗砂岩、6块致密砂岩岩样的实验结果进行对比,结果表明,长庆超低渗砂岩岩样大喉道控制的可动流体百分数小于长庆特低渗砂岩岩样,而大于长庆致密砂岩岩样。  相似文献   

14.
 在注空气采油生产过程中,必须高度重视可燃油蒸气的爆炸问题。本文借助AutoReaGas气体爆炸模拟软件对注空气管内原油蒸气在高压状态(30MPa)不同初始温度下发生爆炸的过程进行了数值模拟。结果表明,爆炸产生的超压可达450MPa,温度可达2400K,会对油管和井口采气树等设施造成严重破坏;管内爆炸超压值与初始温度关系密切,在爆炸冲击波与反射波未叠加前,初始温度升高会导致爆炸超压的下降,在叠加区域内爆炸初始温度升高会导致爆炸超压的明显升高,750m远处压力基本不再变化;初始温度对爆炸温度影响甚微,初始压力为30MPa时,无论初始温度多大管内温度在距井口600m以后都恢复到初始温度。分析可知,爆炸只会造成充气区域及其附近管段内压力和温度急剧升高,对远场作用不明显。  相似文献   

15.
为明确白云岩储层酸岩反应控制模式界限,以中亚某区块白云岩储层岩心为对象,开展酸岩反应动力学试验和数值模拟研究,并通过扫描电镜对比分析灰岩与白云岩酸蚀机制的差异;建立不同因素控制下的白云岩酸岩反应动力学方程,明确温度90℃、转速500 r/min为表面反应控制模式、表面反应和传质共同控制模式的界限。结果表明相同试验条件下,随着白云质体积分数的升高,酸岩反应速度迅速降低;当白云质体积分数超过75%时,酸岩反应速度降到最低并趋于稳定;白云岩储层的酸压改造方向应区别于灰岩储层,在允许范围内可以适当提高酸岩反应速度,以改善裂缝壁面的非均匀刻蚀程度,增大酸蚀裂缝的导流能力。  相似文献   

16.
针对川中须家河组低渗气藏含水饱和度高、气井单井产能低、稳产困难的现状,急需优化调整生产方案提高产能。为此,通过计算机断层扫描(computed tomography, CT)技术分析了不同类型储层的孔隙结构特征及其影响;其次,在地层条件下进行实验研究了不同类型岩心的气-水两相、气相单相的渗流特征,并确定了气藏开发的渗透率下限。研究表明,与孔隙度、孔喉半径相比,孔隙类型对渗透率的影响程度更高;随着含水饱和度的提高,气相流动能力大幅降低;束缚水条件下,孔隙型岩心内的气相流动存在启动压力梯度;当生产压差为16 MPa和20 MPa时,对应的渗透率下限分别为0.34、0.27 mD。实际生产过程中,可以通过控制含水饱和度、提高储层渗透率或生产压差的方式提高气井产能。该研究对掌握低渗气藏的气相流动特征、优化调整生产方案具有借鉴意义。  相似文献   

17.
为了揭示不同渗透率储层岩心气驱动用规律及气水交替采油机理,开展基于华北潜山致密油储集层岩样,不同条件下的常规气驱和气水交替实验,并结合核磁共振技术,分析实验不同阶段T2谱的变化,定量计算孔隙内的油水分布变化情况。研究表明:含裂缝岩心低驱替压力下,采出油量较多,增加驱替压力后,新增采油量很少,增加驱替压力对驱油效率的提高作用不明显;不含裂缝的均质岩心低驱替压力下,采出油量较多,增加驱替压力后,采油量有所提高,增加驱替压力对驱油效率的提高有一定作用;对于裂缝发育岩心,气水交替采油机理主要为水的渗吸作用,从而采出小孔喉内的油,5块岩心气水交替采出油百分数介于5.04%~8.15%,平均为6.58%,其中水的“封堵”作用不明显。  相似文献   

18.
为研究不同地应力作用下的油气储层热采过程中渗透率的变化规律,利用自主研制的热流固三场耦合渗流试验系统,选用难被孔隙介质吸附的氦气作为渗流气体,并考虑氦气黏度随温度和压强的变化,消除孔隙介质对渗流气体的吸附和气体黏度变化对渗透试验的影响,开展不同初始应力条件下煤岩试件升温渗透试验。结果表明:孔隙介质渗透率随温度升高先增大后减小,呈非单调非线性变化规律,并存在与初始有效应力有关的拐点温度,这是由于在拐点温度之前,温度应力小于初始有效应力,固体骨架向外膨胀,孔隙空间增大,渗透率增大,超过拐点温度后,温度应力大于初始有效应力,固体骨架向孔隙内膨胀挤占孔隙空间,渗透率降低;渗透率变化拐点温度随初始体积应力的增大而减小,温度应力升高速率随初始体积应力增加而增大。  相似文献   

19.
超低渗油藏超前注水区油井压裂时机探讨   总被引:2,自引:0,他引:2  
针对部分超低渗油藏超前注水后,油井压裂缝高度控制难度大的问题,通过声发射测试及有限元模拟方法分别对超前注水前、后的地应力特征进行了研究,认为超前注水后,储、隔层应力差更低,不利于控制压裂缝高.在对该类岩石物理性质研究的基础上,通过物理模拟实验方法对该类油藏油井压裂时机进行了研究,认为油井在未注水前压裂,有利于控制缝高,压裂试油结束后注水,待地层压力达到超前注水设计压力水平后投产,可提高开发效果.  相似文献   

20.
渗透系数作为土的基本力学指标参数,是孔隙比和粘滞系数的函数,为了研究黏土中结合水对粘滞系数的影响,开展固结试验得到各级压力下的渗透系数与粘滞系数,并由高速离心机分离试验定量测得结合水量。结果表明固结压力增大,孔隙比减小,渗透系数随之减小,由渗透系数计算公式反算出动力粘滞系数,随固结压力增大而线性增大。压力较小时,结合水量变化较小;自由水减少到一定程度变为结合水排出为主。结合水排出会导致结合水膜厚度变薄,粘滞系数随结合水膜厚度减小而线性增大。所以,对于结合水含量较高的黏土,固结压缩过程中存在结合水排出现象,计算渗透系数时需考虑结合水膜变薄导致粘滞系数增大进而对渗透系数产生的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号