首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sliding movement of single actin filaments on one-headed myosin filaments   总被引:1,自引:0,他引:1  
Y Harada  A Noguchi  A Kishino  T Yanagida 《Nature》1987,326(6115):805-808
The myosin molecule consists of two heads, each of which contains an enzymatic active site and an actin-binding site. The fundamental problem of whether the two heads function independently or cooperatively during muscle contraction has been studied by methods using an actomyosin thread, superprecipitation and chemical modification of muscle fibres. No clear conclusion has yet been reached. We have approached this question using an assay system in which sliding movements of fluorescently labelled single actin filaments along myosin filaments can be observed directly. Here, we report direct measurement of the sliding of single actin filaments along one-headed myosin filaments in which the density of heads was varied over a wide range. Our results show that cooperative interaction between the two heads of myosin is not essential for inducing the sliding movement of actin filaments.  相似文献   

2.
Can a myosin molecule bind to two actin filaments?   总被引:4,自引:0,他引:4  
G Offer  A Elliott 《Nature》1978,271(5643):325-329
It is suggested that in striated muscles the two heads of one myosin molecule are able to interact with different actin filaments. This would provide a simple explanation for the appearance and arrangement of cross-bridges in insect flight muscle in rigor.  相似文献   

3.
R J Adams  T D Pollard 《Nature》1986,322(6081):754-756
Eukaryotic cells are dependent on their ability to translocate membraneous elements about the cytoplasm. In many cells long translocations of organelles are associated with microtubules. In other cases, such as the rapid cytoplasmic streaming in some algae, organelles appear to be propelled along actin filaments. It has been assumed, but not proven, that myosin produces these movements. We have tested vesicles from another eukaryotic cell for their ability to move on the exposed actin bundles of Nitella as an indiction that actin-based organelle movements may be a general property of cells. We found that organelles from Acanthamoeba castellanii can move along Nitella actin filaments. Here, we report two different experiments indicating that the single-headed non-polymerizable myosin isozyme myosin-I is responsible for this organelle motility. First, monoclonal antibodies to myosin-I inhibit movement, but antibodies that inhibit double-headed myosin-II do not. Second, approximately 20% of the myosin-I in homogenates co-migrates with motile vesicles during Percoll density-gradient ultracentrifugation. This is the first indication of a role for myosin-I within the cell and supports the suggestion of Albanesi et al. that myosin-I moves vesicles in this way.  相似文献   

4.
H Higuchi  Y E Goldman 《Nature》1991,352(6333):352-354
Muscle contraction is generally thought to be driven by tilting of the 19-nm-long myosin head, part of the thick filament, while attached to actin, part of the thin filament. This motion would produce about 12 nm of filament sliding. Recent estimates of the sliding distance per ATP molecule hydrolysed by actomyosin in vitro vary widely from 8 nm to greater than or equal to 200 nm. The latter value is incompatible with a power stroke incorporating a single tilting motion of the head. We have measured the isotonic sliding distance per ATP molecule hydrolysed during the interaction between myosin and actin in skinned muscle fibres. We directly estimated the proportion of simultaneously attached actomyosin complexes and their ATP use. We report here that at low loads the interaction distance is at least 40 nm. This distance corresponds to the length of the power stroke plus the filament sliding while actomyosin crossbridges bear negative drag forces. If the power stroke is 12 nm, then our results indicate the drag distance to be at least 28 nm. Our results could also be explained by multiple power strokes per ATP molecule hydrolysed.  相似文献   

5.
Interaction of actin and myosin   总被引:2,自引:0,他引:2  
S V Perry  J Cotterill 《Nature》1965,206(980):161-163
  相似文献   

6.
Formation of reverse rigor chevrons by myosin heads   总被引:7,自引:0,他引:7  
M C Reedy  C Beall  E Fyrberg 《Nature》1989,339(6224):481-483
The uniform angle and conformation of myosin subfragment 1 (S1) bound to actin filaments (F-actin) attest to the precise alignment and stereospecificity of the binding of these two contractile proteins. Because actin filaments are polar, myosin heads must swing or rotate about the head-tail junction in order to bind. Electron microscopy of isolated thick filaments and of myosin molecules suggests that the molecules are flexible, but myosin fragments and crossbridges have been reported not to interact with inappropriately oriented actin filaments. Here we describe myofibrillar defects engendered by a site-directed mutation within the flight-muscle-specific actin gene of the fruitfly Drosophila. The mutation apparently retards sarcomere assembly: peripheral thick and thin filaments are misregistered and not incorporated into the Z-line. Therefore, a myosin filament encounters thin filaments with the 'wrong' polarity. We show that myosin heads tethered in a single thick filament can bind with opposite rigor crossbridge angles to flanking thin filaments, which are apparently of opposite polarities. Preservation of identical actomyosin interfaces requires that sets of heads originating from opposite sides of the thick filament swivel 180 degrees relative to each other, implying that myosin crossbridges are as flexible as isolated molecules.  相似文献   

7.
8.
Mechanism of force generation by myosin heads in skeletal muscle   总被引:1,自引:0,他引:1  
Muscles generate force and shortening in a cyclical interaction between the myosin head domains projecting from the myosin filaments and the adjacent actin filaments. Although many features of the dynamic performance of muscle are determined by the rates of attachment and detachment of myosin and actin, the primary event in force generation is thought to be a conformational change or 'working stroke' in the actin-bound myosin head. According to this hypothesis, the working stroke is much faster than attachment or detachment, but can be observed directly in the rapid force transients that follow step displacement of the filaments. Although many studies of the mechanism of muscle contraction have been based on this hypothesis, the alternative view-that the fast force transients are caused by fast components of attachment and detachment--has not been excluded definitively. Here we show that measurements of the axial motions of the myosin heads at ?ngstr?m resolution by a new X-ray interference technique rule out the rapid attachment/detachment hypothesis, and provide compelling support for the working stroke model of force generation.  相似文献   

9.
Structure of the backbone in myosin filaments of muscle   总被引:11,自引:0,他引:11  
J S Wray 《Nature》1979,277(5691):37-40
New X-ray data suggest how myosin rods, themselves alpha-helical coiled coils, form the thick filament backbone of crustacean muscles by additional supercoiling. Natural transformations of this structure may describe the myosin backbone in many other animals also.  相似文献   

10.
Light-chain movement and regulation in scallop myosin   总被引:9,自引:0,他引:9  
Photo-cross-linking techniques show that when scallop myosin or myofibrils are subjected to experimental conditions that cause relaxed muscles to go into rigor, the N-terminal portion of the regulatory light chain of myosin moves towards the essential light chain while the C-terminal portion stays in place. These changes occur on the myosin before combination with actin. Cross-linking of the N-terminal region to the essential light chain in rigor locks the myosin into a conformation such that calcium sensitivity of the actin-activated Mg-ATPase is lost.  相似文献   

11.
J A Spudich  S J Kron  M P Sheetz 《Nature》1985,315(6020):584-586
Although the biochemical properties of the actin/myosin interaction have been studied extensively using actin activation of myosin ATPase as an assay, until recently no well-defined assay has been available to measure the mechanical properties of ATP-dependent movement of myosin along actin filaments. The first direct measurements of the rate of myosin movement in vitro used a naturally occurring, biochemically ill-defined array of actin filaments from the alga Nitella. We report here the construction of an oriented array of filaments reconstituted from purified muscle actin and the use of this array in a biochemically defined quantitative assay for the directed movement of myosin-coated polystyrene beads. We demonstrate for the first time that actin alone, linked to a substratum by a protein anchor, is sufficient to support movement of myosin at rates consistent with the speeds of muscle contraction and other forms of cell motility.  相似文献   

12.
Myosin subfragment-1 is sufficient to move actin filaments in vitro   总被引:3,自引:0,他引:3  
The rotating crossbridge model for muscle contraction proposes that force is produced by a change in angle of the crossbridge between the overlapping thick and thin filaments. Myosin, the major component of the thick filament, is comprised of two heavy chains and two pairs of light chains. Together they form two globular heads, which give rise to the crossbridge in muscle, and a coiled-coil rod, which forms the shaft of the thick filament. The isolated head fragment, subfragment-1 (S1), contains the ATPase and actin-binding activities of myosin (Fig. 1). Although S1 seems to have the requisite enzymatic activity, direct evidence that S1 is sufficient to drive actin movement has been lacking. It has long been recognized that in vitro movement assays are an important approach for identifying the elements in muscle responsible for force generation. Hynes et al. showed that beads coated with heavy meromyosin (HMM), a soluble proteolytic fragment of myosin consisting of a part of the rod and the two heads, can move on Nitella actin filaments. Using the myosin-coated surface assay of Kron and Spudich, Harada et al. showed that single-headed myosin filaments bound to glass support movement of actin at nearly the same speed as intact myosin filaments. These studies show that the terminal portion of the rod and the two-headed nature of myosin are not required for movement. To restrict the region responsible for movement further, we have modified the myosin-coated surface assay by replacing the glass surface with a nitrocellulose film. Here we report that myosin filaments, soluble myosin, HMM or S1, when bound to a nitrocellulose film, support actin sliding movement (Fig. 2). That S1 is sufficient to cause sliding movement of actin filaments in vitro gives strong support to models of contraction that place the site of active movement in muscle within the myosin head.  相似文献   

13.
S Yumura  Y Fukui 《Nature》1985,314(6007):194-196
Myosin is thought to act as a major mechanochemical transducer in non-muscle cell motility, but the in situ organization of the molecules has not yet been determined. Here we report the localization of myosin 'rods', analogous to the thick filaments of muscle, by ameliorated immunofluorescence and demonstrate the dynamic translocation of these rods in response to exogenously added cyclic AMP, which is a chemoattractant for Dictyostelium amoebae. On addition of cyclic AMP, we observed instantaneous shedding of the endoplasmic myosin followed by an increase in cortical rods, the original distribution being recovered in a few minutes. We conclude that myosin filaments mediate Dictyostelium cell movement, probably by an assembly/disassembly cycle of the molecules in response to a chemotactic stimulus.  相似文献   

14.
Calcium regulation of molluscan myosin ATPase in the absence of actin   总被引:1,自引:0,他引:1  
C Wells  C R Bagshaw 《Nature》1985,313(6004):696-697
In the myosin-linked regulatory mechanism typified by the molluscan scallop adductor muscle, contraction is controlled by Ca2+ binding to sites on the thick filament protein, myosin. The regulatory light chains of myosin heads are involved directly in this mechanism and early studies suggested that, in the absence of Ca2+, these subunits prevent the interaction of a myosin-adenosine nucleotide complex with the actin-containing thin filament. Subsequently, Ashiba et al. reported that the steady-state ATPase of molluscan myosin exhibits a limited degree of Ca2+ activation in the absence of actin. Recently, however, we have shown that steady-state ATPase activity in relaxing conditions is dominated by the unregulated molecules in the myosin preparation. Single-turnover kinetic methods are required to monitor the highly suppressed ATPase activity of the regulated population. Using the latter approach, we report here that scallop myosin ATPase is reduced about 100-fold on removal of Ca2+. The regulatory light chains maintain the relaxed state via conformational changes which suppress the product release steps, irrespective of the presence of actin.  相似文献   

15.
T Yanagida  M Nakase  K Nishiyama  F Oosawa 《Nature》1984,307(5946):58-60
Actin is found in almost all kinds of non-muscle cells where it is thought to have an important role in cell motility. A proper understanding of that role will only be possible when reliable in vitro systems are available for investigating the interaction of cellular actin and myosin. A start has been made on several systems, most recently by Sheetz and Spudich who demonstrated unidirectional movement of HMM-coated beads along F-actin cables on arrays of chloroplasts exposed by dissection of a Nitella cell. As an alternative approach, we report here the direct observation by fluorescence microscopy of the movements of single F-actin filaments interacting with soluble myosin fragments energized by Mg2+-ATP.  相似文献   

16.
Ca2+-sensitive gelation of actin filaments by a new protein factor   总被引:16,自引:0,他引:16  
N Mimura  A Asano 《Nature》1979,282(5734):44-48
Two protein factors which bind to, and induce gelation of, actin filaments were purified from Ehrlich tumour cells. Filamin induced Ca2+-insensitive gelation, whereas a new protein factor ('actinogelin') was found to induce Ca2+-sensitive gelation.  相似文献   

17.
Holmes KC  Angert I  Kull FJ  Jahn W  Schröder RR 《Nature》2003,425(6956):423-427
Muscle contraction involves the cyclic interaction of the myosin cross-bridges with the actin filament, which is coupled to steps in the hydrolysis of ATP. While bound to actin each cross-bridge undergoes a conformational change, often referred to as the "power stroke", which moves the actin filament past the myosin filaments; this is associated with the release of the products of ATP hydrolysis and a stronger binding of myosin to actin. The association of a new ATP molecule weakens the binding again, and the attached cross-bridge rapidly dissociates from actin. The nucleotide is then hydrolysed, the conformational change reverses, and the myosin cross-bridge reattaches to actin. X-ray crystallography has determined the structural basis of the power stroke, but it is still not clear why the binding of actin weakens that of the nucleotide and vice versa. Here we describe, by fitting atomic models of actin and the myosin cross-bridge into high-resolution electron cryo-microscopy three-dimensional reconstructions, the molecular basis of this linkage. The closing of the actin-binding cleft when actin binds is structurally coupled to the opening of the nucleotide-binding pocket.  相似文献   

18.
A Morris  J Tannenbaum 《Nature》1980,287(5783):637-639
The altered morphology, disappearance or 'disruption' of actin filaments (microfilaments) in cells treated with cytochalasin has sometimes been attributed to depolymerization of filamentous actin (F-actin) to its globular subunit (G-actin), but attempts to confirm that mechanism have been inconclusive. Treatment of purified actin filaments with cytochalasin B (CB) decreased their viscosity, consistent with depolymerization, which was not, however, revealed by electron microscopy, although the filaments appeared abnormal. CB also increased the ATP-ase activity of F-actin, suggesting that it had been destabilized, while actin filaments in the acrosomal process were not depolymerized. CB or cytochalasin D (CD) can dissolve actin gels (reviewed in ref. 7, see also refs 8 and 9) without depolymerizing their filaments. The 'disrupted' actin structures in CD-treated cells bound heavy meromysin, indicating that at least some of the cellular actin was filamentous. Using a rapid assay for G- and F-actin in cell extracts, based on the inhibition of DNase I, we have found that neither short-nor long-term exposure of HEp-2 cells to CD produce net depolymerization of actin filaments.  相似文献   

19.
K Trombitás  A Tigyi-Sebes 《Nature》1984,309(5964):168-170
An unresolved problem in understanding muscular contraction is why the internal resistance to sarcomere shortening increases progressively during contraction. We have addressed this problem here by investigating the movement of detached acting filaments in the sarcomeres of insect flight muscle. The final position of the detached actin filaments shows that they were able to slide freely into regions where they have the wrong polarity to interact actively with myosin (double-overlap zones) but where they prevent the exertion of force by cross-bridges between myosin and the correctly polarized acting filaments. These observations indicate that the isometric tension at all sarcomere lengths is directly proportional to the number of cross-bridges in the region of single-overlap of correctly polarized actin and myosin filaments. The decrease in tension as sarcomeres shorten is thus the result of the decrease in the number of effective cross-bridges as actin filaments slide into regions where they are of the wrong polarity to form cross-bridges, and where they inhibit the existing cross-bridges.  相似文献   

20.
Homma K  Yoshimura M  Saito J  Ikebe R  Ikebe M 《Nature》2001,412(6849):831-834
Myosins constitute a superfamily of at least 18 known classes of molecular motors that move along actin filaments. Myosins move towards the plus end of F-actin filaments; however, it was shown recently that a certain class of myosin, class VI myosin, moves towards the opposite end of F-actin, that is, in the minus direction. As there is a large, unique insertion in the myosin VI head domain between the motor domain and the light-chain-binding domain (the lever arm), it was thought that this insertion alters the angle of the lever-arm switch movement, thereby changing the direction of motility. Here we determine the direction of motility of chimaeric myosins that comprise the motor domain and the lever-arm domain (containing an insert) from myosins that have movement in the opposite direction. The results show that the motor core domain, but neither the large insert nor the converter domain, determines the direction of myosin motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号