首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cornelia de Lange syndrome (CdLS) is a multiple malformation disorder characterized by dysmorphic facial features, mental retardation, growth delay and limb reduction defects. We indentified and characterized a new gene, NIPBL, that is mutated in individuals with CdLS and determined its structure and the structures of mouse, rat and zebrafish homologs. We named its protein product delangin. Vertebrate delangins have substantial homology to orthologs in flies, worms, plants and fungi, including Scc2-type sister chromatid cohesion proteins, and D. melanogaster Nipped-B. We propose that perturbed delangin function may inappropriately activate DLX genes, thereby contributing to the proximodistal limb patterning defects in CdLS. Genome analyses typically identify individual delangin or Nipped-B-like orthologs in diploid animal and plant genomes. The evolution of an ancestral sister chromatid cohesion protein to acquire an additional role in developmental gene regulation suggests that there are parallels between CdLS and Roberts syndrome.  相似文献   

2.
3.
Familial idiopathic nephrotic syndromes represent a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. A causative gene for this disease, NPHS2, was mapped to 1q25-31 and we report here its identification by positional cloning. NPHS2 is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. We found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier.  相似文献   

4.
We report here the identification of a gene associated with the hyperparathyroidism-jaw tumor (HPT-JT) syndrome. A single locus associated with HPT-JT (HRPT2) was previously mapped to chromosomal region 1q25-q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT-JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT-JT and in development of some sporadic parathyroid tumors.  相似文献   

5.
Autosomal dominant centronuclear myopathy is a rare congenital myopathy characterized by delayed motor milestones and muscular weakness. In 11 families affected by centronuclear myopathy, we identified recurrent and de novo missense mutations in the gene dynamin 2 (DNM2, 19p13.2), which encodes a protein involved in endocytosis and membrane trafficking, actin assembly and centrosome cohesion. The transfected mutants showed reduced labeling in the centrosome, suggesting that DNM2 mutations might cause centronuclear myopathy by interfering with centrosome function.  相似文献   

6.
7.
Functional impairment of DNA damage response pathways leads to increased genomic instability. Here we describe the centrosomal protein CEP152 as a new regulator of genomic integrity and cellular response to DNA damage. Using homozygosity mapping and exome sequencing, we identified CEP152 mutations in Seckel syndrome and showed that impaired CEP152 function leads to accumulation of genomic defects resulting from replicative stress through enhanced activation of ATM signaling and increased H2AX phosphorylation.  相似文献   

8.
Feingold syndrome is characterized by variable combinations of esophageal and duodenal atresias, microcephaly, learning disability, syndactyly and cardiac defect. We show here that heterozygous mutations in the gene MYCN are present in Feingold syndrome. All mutations are predicted to disrupt both the full-length protein and a new shortened MYCN isoform, suggesting that multiple aspects of early embryogenesis and postnatal brain growth in humans are tightly regulated by MYCN dosage.  相似文献   

9.
Neurospora crassa ARG13 and Saccharomyces cerevisiae ARG11 encode mitochondrial carrier family (MCF) proteins that transport ornithine across the mitochondrial inner membrane. We used their sequences to identify EST candidates that partially encode orthologous mammalian transporters. We thereby identified such a gene (ORNT1) that maps to 13q14 and whose expression, similar to that of other urea cycle (UC) components, was high in liver and varied with changes in dietary protein. ORNT1 expression restores ornithine metabolism in fibroblasts from patients with hyperammonaemia-hyperornithinaemia-homocitrullinuria (HHH) syndrome. In a survey of 11 HHH probands, we identified 3 ORNT1 mutant alleles that account for 21 of 22 possible mutant ORNT1 genes in our patients: F188delta, which is common in French-Canadian HHH patients and encodes an unstable protein; E180K, which encodes a stable, properly targeted protein that is inactive; and a 13q14 microdeletion. Our results show that ORNT1 encodes the mitochondrial ornithine transporter involved in UC function and is defective in HHH syndrome.  相似文献   

10.
Altered growth and function of synoviocytes, the intimal cells which line joint cavities and tendon sheaths, occur in a number of skeletal diseases. Hyperplasia of synoviocytes is found in both rheumatoid arthritis and osteoarthritis, despite differences in the underlying aetiologies of the two disorders. We have studied the autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP; MIM 208250) to identify biological pathways that lead to synoviocyte hyperplasia, the principal pathological feature of this syndrome. Using a positional-candidate approach, we identified mutations in a gene (CACP) encoding a secreted proteoglycan as the cause of CACP. The CACP protein, which has previously been identified as both 'megakaryocyte stimulating factor precursor' and 'superficial zone protein', contains domains that have homology to somatomedin B, heparin-binding proteins, mucins and haemopexins. In addition to expression in joint synovium and cartilage, CACP is expressed in non-skeletal tissues including liver and pericardium. The similarity of CACP sequence to that of other protein families and the expression of CACP in non-skeletal tissues suggest it may have diverse biological activities.  相似文献   

11.
The epidermis is a highly organized structure, the integrity of which is central to the protection of an organism. Development and subsequent maintenance of this tissue depends critically on the intricate balance between proliferation and differentiation of a resident stem cell population; however, the signals controlling the proliferation-differentiation switch in vivo remain elusive. Here, we show that mice carrying a homozygous missense mutation in interferon regulatory factor 6 (Irf6), the homolog of the gene mutated in the human congenital disorders Van der Woude syndrome and popliteal pterygium syndrome, have a hyperproliferative epidermis that fails to undergo terminal differentiation, resulting in soft tissue fusions. We further demonstrate that mice that are compound heterozygotes for mutations in Irf6 and the gene encoding the cell cycle regulator protein stratifin (Sfn; also known as 14-3-3sigma) show similar defects of keratinizing epithelia. Our results indicate that Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch and that Irf6 and Sfn interact genetically in this process.  相似文献   

12.
Williams syndrome is a neurodevelopmental disorder caused by the hemizygous deletion of 1.6 Mb on human chromosome 7q11.23. This region comprises the gene CYLN2, encoding CLIP-115, a microtubule-binding protein of 115 kD. Using a gene-targeting approach, we provide evidence that mice with haploinsufficiency for Cyln2 have features reminiscent of Williams syndrome, including mild growth deficiency, brain abnormalities, hippocampal dysfunction and particular deficits in motor coordination. Absence of CLIP-115 also leads to increased levels of CLIP-170 (a closely related cytoplasmic linker protein) and dynactin at the tips of growing microtubules. This protein redistribution may affect dynein motor regulation and, together with the loss of CLIP-115-specific functions, underlie neurological alterations in Williams syndrome.  相似文献   

13.
14.
Wolcott-Rallison syndrome (WRS) is a rare, autosomal recessive disorder characterized by permanent neonatal or early infancy insulin-dependent diabetes. Epiphyseal dysplasia, osteoporosis and growth retardation occur at a later age. Other frequent multisystemic manifestations include hepatic and renal dysfunction, mental retardation and cardiovascular abnormalities. On the basis of two consanguineous families, we mapped WRS to a region of less than 3 cM on chromosome 2p12, with maximal evidence of linkage and homozygosity at 4 microsatellite markers within an interval of approximately 1 cM. The gene encoding the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) resides in this interval; thus we explored it as a candidate. We identified distinct mutations of EIF2AK3 that segregated with the disorder in each of the families. The first mutation produces a truncated protein in which the entire catalytic domain is missing. The other changes an amino acid, located in the catalytic domain of the protein, that is highly conserved among kinases from the same subfamily. Our results provide evidence for the role of EIF2AK3 in WRS. The identification of this gene may provide insight into the understanding of the more common forms of diabetes and other pathologic manifestations of WRS.  相似文献   

15.
Neurodegenerative disorders such as Parkinson and Alzheimer disease cause motor and cognitive dysfunction and belong to a heterogeneous group of common and disabling disorders. Although the complex molecular pathophysiology of neurodegeneration is largely unknown, major advances have been achieved by elucidating the genetic defects underlying mendelian forms of these diseases. This has led to the discovery of common pathophysiological pathways such as enhanced oxidative stress, protein misfolding and aggregation and dysfunction of the ubiquitin-proteasome system. Here, we describe loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia (PARK9, Kufor-Rakeb syndrome). Whereas the wild-type protein was located in the lysosome of transiently transfected cells, the unstable truncated mutants were retained in the endoplasmic reticulum and degraded by the proteasome. Our findings link a class of proteins with unknown function and substrate specificity to the protein networks implicated in neurodegeneration and parkinsonism.  相似文献   

16.
Labrador retrievers are the most common dog breed in the world, with over 200,000 new kennel club registrations per year. The syndrome of exercise-induced collapse (EIC) in this breed is manifested by muscle weakness, incoordination and life-threatening collapse after intense exercise. Using a genome-wide microsatellite marker scan for linkage in pedigrees, we mapped the EIC locus to canine chromosome 9. We then used SNP association and haplotype analysis to fine map the locus, and identified a mutation in the dynamin 1 gene (DNM1) that causes an R256L substitution in a highly conserved region of the protein. This first documented mammalian DNM1 mutation is present at a high frequency in the breed and is a compelling candidate causal mutation for EIC, as the dynamin 1 protein has an essential role in neurotransmission and synaptic vesicle endocytosis.  相似文献   

17.
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.  相似文献   

18.
Normal development of the cerebral cortex requires long-range migration of cortical neurons from proliferative regions deep in the brain. Lissencephaly ("smooth brain," from "lissos," meaning smooth, and "encephalos," meaning brain) is a severe developmental disorder in which neuronal migration is impaired, leading to a thickened cerebral cortex whose normally folded contour is simplified and smooth. Two identified lissencephaly genes do not account for all known cases, and additional lissencephaly syndromes have been described. An autosomal recessive form of lissencephaly (LCH) associated with severe abnormalities of the cerebellum, hippocampus and brainstem maps to chromosome 7q22, and is associated with two independent mutations in the human gene encoding reelin (RELN). The mutations disrupt splicing of RELN cDNA, resulting in low or undetectable amounts of reelin protein. LCH parallels the reeler mouse mutant (Reln(rl)), in which Reln mutations cause cerebellar hypoplasia, abnormal cerebral cortical neuronal migration and abnormal axonal connectivity. RELN encodes a large (388 kD) secreted protein that acts on migrating cortical neurons by binding to the very low density lipoprotein receptor (VLDLR), the apolipoprotein E receptor 2 (ApoER2; refs 9-11 ), alpha3beta1 integrin and protocadherins. Although reelin was previously thought to function exclusively in brain, some humans with RELN mutations show abnormal neuromuscular connectivity and congenital lymphoedema, suggesting previously unsuspected functions for reelin in and outside of the brain.  相似文献   

19.
Neutral lipid storage disease comprises a heterogeneous group of autosomal recessive disorders characterized by systemic accumulation of triglycerides in cytoplasmic droplets. Here we report a neutral lipid storage disease subgroup characterized by mild myopathy, absence of ichthyosis and mutations in both alleles of adipose triglyceride lipase (PNPLA2, also known as ATGL). Three of these mutations are predicted to lead to a truncated ATGL protein with an intact patatin domain containing the active site, but with defects in the hydrophobic domain. The block in triglyceride degradation was mimicked by short interfering RNA directed against ATGL. NLSDM is distinct from Chanarin-Dorfman syndrome, which is characterized by neutral lipid storage disease with ichthyosis, mild myopathy and hepatomegaly due to mutations in ABHD5 (also known as CGI-58).  相似文献   

20.
Cranio-lenticulo-sutural dysplasia (CLSD) is an autosomal recessive syndrome characterized by late-closing fontanels, sutural cataracts, facial dysmorphisms and skeletal defects mapped to chromosome 14q13-q21 (ref. 1). Here we show, using a positional cloning approach, that an F382L amino acid substitution in SEC23A segregates with this syndrome. SEC23A is an essential component of the COPII-coated vesicles that transport secretory proteins from the endoplasmic reticulum to the Golgi complex. Electron microscopy and immunofluorescence show that there is gross dilatation of the endoplasmic reticulum in fibroblasts from individuals affected with CLSD. These cells also exhibit cytoplasmic mislocalization of SEC31. Cell-free vesicle budding assays show that the F382L substitution results in loss of SEC23A function. A phenotype reminiscent of CLSD is observed in zebrafish embryos injected with sec23a-blocking morpholinos. Our observations suggest that disrupted endoplasmic reticulum export of the secretory proteins required for normal morphogenesis accounts for CLSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号