首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geijsen N  Horoschak M  Kim K  Gribnau J  Eggan K  Daley GQ 《Nature》2004,427(6970):148-154
Egg and sperm cells (gametes) of the mouse are derived from a founder population of primordial germ cells that are set aside early in embryogenesis. Primordial germ cells arise from the proximal epiblast, a region of the early mouse embryo that also contributes to the first blood lineages of the embryonic yolk sac. Embryonic stem cells differentiate in vitro into cystic structures called embryoid bodies consisting of tissue lineages typical of the early mouse embryo. Because embryoid bodies sustain blood development, we reasoned that they might also support primordial germ cell formation. Here we isolate primordial germ cells from embryoid bodies, and derive continuously growing lines of embryonic germ cells. Embryonic germ cells show erasure of the methylation markers (imprints) of the Igf2r and H19 genes, a property characteristic of the germ lineage. We show that embryoid bodies support maturation of the primordial germ cells into haploid male gametes, which when injected into oocytes restore the somatic diploid chromosome complement and develop into blastocysts. Our ability to derive germ cells from embryonic stem cells provides an accessible in vitro model system for studies of germline epigenetic modification and mammalian gametogenesis.  相似文献   

2.
3.
A molecular programme for the specification of germ cell fate in mice   总被引:32,自引:0,他引:32  
Saitou M  Barton SC  Surani MA 《Nature》2002,418(6895):293-300
Germ cell fate in mice is induced in proximal epiblast cells by the extra-embryonic ectoderm, and is not acquired through the inheritance of any preformed germ plasm. To determine precisely how germ cells are specified, we performed a genetic screen between single nascent germ cells and their somatic neighbours that share common ancestry. Here we show that fragilis, an interferon-inducible transmembrane protein, marks the onset of germ cell competence, and we propose that through homotypic association, it demarcates germ cells from somatic neighbours. Using single-cell gene expression profiles, we also show that only those cells with the highest expression of fragilis subsequently express stella, a gene that we detected exclusively in lineage-restricted germ cells. The stella positive nascent germ cells exhibit repression of homeobox genes, which may explain their escape from a somatic cell fate and the retention of pluripotency.  相似文献   

4.
5.
C D Stern  D R Canning 《Nature》1990,343(6255):273-275
In amniotes, all of the tissues of the adult arise from the epiblast, one of the two layers of cells present in the early embryo; the mesoderm and gut endoderm arise from an epiblast-derived structure known as the primitive streak. The monoclonal antibody HNK-1 recognizes the cells of the primitive streak in the chick embryo. Before streak formation, HNK-1 identifies cells that are randomly distributed within the epiblast. We have now used two novel ways to study cell lineage and commitment to show that the epiblast of the early chick embryo contains two distinct populations of cells with different developmental fates at a stage during which 'mesodermal induction' is believed to occur. One cell population, recognized by monoclonal antibody HNK-1, is destined to form mesoderm and endoderm; the rest of the epiblast is unable to give rise to mesoderm if this population of cells is removed.  相似文献   

6.
7.
Nodal signalling in the epiblast patterns the early mouse embryo.   总被引:2,自引:0,他引:2  
Shortly after implantation the mouse embryo comprises three tissue layers. The founder tissue of the embryo proper, the epiblast, forms a radially symmetric cup of epithelial cells that grows in close apposition to the extra-embryonic ectoderm and the visceral endoderm. This simple cylindrical structure exhibits a distinct molecular pattern along its proximal-distal axis. The anterior-posterior axis of the embryo is positioned later by coordinated cell movements that rotate the pre-existing proximal-distal axis. The transforming growth factor-beta family member Nodal is known to be required for formation of the anterior-posterior axis. Here we show that signals from the epiblast are responsible for the initiation of proximal-distal polarity. Nodal acts to promote posterior cell fates in the epiblast and to maintain molecular pattern in the adjacent extra-embryonic ectoderm. Both of these functions are independent of Smad2. Moreover, Nodal signals from the epiblast also pattern the visceral endoderm by activating the Smad2-dependent pathway required for specification of anterior identity in overlying epiblast cells. Our experiments show that proximal-distal and subsequent anterior-posterior polarity of the pregastrulation embryo result from reciprocal cell-cell interactions between the epiblast and the two extra-embryonic tissues.  相似文献   

8.
9.
Nanog safeguards pluripotency and mediates germline development   总被引:3,自引:0,他引:3  
  相似文献   

10.
The LIM homeobox gene Lhx9 is essential for mouse gonad formation   总被引:14,自引:0,他引:14  
  相似文献   

11.
The classical view of neural plate development held that it arises from the ectoderm, after its separation from the mesodermal and endodermal lineages. However, recent cell-lineage-tracing experiments indicate that the caudal neural plate and paraxial mesoderm are generated from common bipotential axial stem cells originating from the caudal lateral epiblast. Tbx6 null mutant mouse embryos which produce ectopic neural tubes at the expense of paraxial mesoderm must provide a clue to the regulatory mechanism underlying this neural versus mesodermal fate choice. Here we demonstrate that Tbx6-dependent regulation of Sox2 determines the fate of axial stem cells. In wild-type embryos, enhancer N1 of the neural primordial gene Sox2 is activated in the caudal lateral epiblast, and the cells staying in the superficial layer sustain N1 activity and activate Sox2 expression in the neural plate. In contrast, the cells destined to become mesoderm activate Tbx6 and turn off enhancer N1 before migrating into the paraxial mesoderm compartment. In Tbx6 mutant embryos, however, enhancer N1 activity persists in the paraxial mesoderm compartment, eliciting ectopic Sox2 activation and transforming the paraxial mesoderm into neural tubes. An enhancer-N1-specific deletion mutation introduced into Tbx6 mutant embryos prevented this Sox2 activation in the mesodermal compartment and subsequent development of ectopic neural tubes, indicating that Tbx6 regulates Sox2 via enhancer N1. Tbx6-dependent repression of Wnt3a in the paraxial mesodermal compartment is implicated in this regulatory process. Paraxial mesoderm-specific misexpression of a Sox2 transgene in wild-type embryos resulted in ectopic neural tube development. Thus, Tbx6 represses Sox2 by inactivating enhancer N1 to inhibit neural development, and this is an essential step for the specification of paraxial mesoderm from the axial stem cells.  相似文献   

12.
Testis determination requires insulin receptor family function in mice   总被引:1,自引:0,他引:1  
In mice, gonads are formed shortly before embryonic day 10.5 by the thickening of the mesonephros and consist of somatic cells and migratory primordial germ cells. The male sex-determining process is set in motion by the sex-determining region of the Y chromosome (Sry), which triggers differentiation of the Sertoli cell lineage. In turn, Sertoli cells function as organizing centres and direct differentiation of the testis. In the absence of Sry expression, neither XX nor XY gonads develop testes, and alterations in Sry expression are often associated with abnormal sexual differentiation. The molecular signalling mechanisms by which Sry specifies the male pathway and models the undifferentiated gonad are unknown. Here we show that the insulin receptor tyrosine kinase family, comprising Ir, Igf1r and Irr, is required for the appearance of male gonads and thus for male sexual differentiation. XY mice that are mutant for all three receptors develop ovaries and show a completely female phenotype. Reduced expression of both Sry and the early testis-specific marker Sox9 indicates that the insulin signalling pathway is required for male sex determination.  相似文献   

13.
The earliest cell fate decision in the mammalian embryo separates the extra-embryonic trophoblast lineage, which forms the fetal portion of the placenta, from the embryonic cell lineages. The body plan of the embryo proper is established only later at gastrulation, when the pluripotent epiblast gives rise to the germ layers ectoderm, mesoderm and endoderm. Here we show that the T-box gene Eomesodermin performs essential functions in both trophoblast development and gastrulation. Mouse embryos lacking Eomesodermin arrest at the blastocyst stage. Mutant trophoectoderm does not differentiate into trophoblast, indicating that Eomesodermin may be required for the development of trophoblast stem cells. In the embryo proper, Eomesodermin is essential for mesoderm formation. Although the specification of the anterior-posterior axis and the initial response to mesoderm-inducing signals is intact in mutant epiblasts, the prospective mesodermal cells are not recruited into the primitive streak. Our results indicate that Eomesodermin defines a conserved molecular pathway controlling the morphogenetic movements of germ layer formation and has acquired a new function in mammals in the differentiation of trophoblast.  相似文献   

14.
DeRenzo C  Reese KJ  Seydoux G 《Nature》2003,424(6949):685-689
In many animals, establishment of the germ line depends on segregation of a specialized cytoplasm, or 'germ plasm', to a small number of germline precursor cells during early embryogenesis. Germ plasm asymmetry involves targeting of RNAs and proteins to a specific region of the oocyte and/or embryo. Here we demonstrate that germ plasm asymmetry also depends on degradation of germline proteins in non-germline (somatic) cells. We show that five CCCH finger proteins, components of the Caenorhabditis elegans germ plasm, are targeted for degradation by the novel CCCH-finger-binding protein ZIF-1. ZIF-1 is a SOCS-box protein that interacts with the E3 ubiquitin ligase subunit elongin C. Elongin C, the cullin CUL-2, the ring finger protein RBX-1 and the E2 ubiquitin conjugation enzyme UBC5 (also known as LET-70) are all required in vivo for CCCH finger protein degradation. Degradation is activated in somatic cells by the redundant CCCH finger proteins MEX-5 and MEX-6, which are counteracted in the germ line by the PAR-1 kinase. We propose that segregation of the germ plasm involves both stabilization of germline proteins in the germ line and cullin-dependent degradation in the soma.  相似文献   

15.
Despite the importance of germ cells to the survival of species, surprisingly little is known about their embryological origin, proliferation, migration and entry into mitotic arrest or meiosis. Mutations in the murine Dominant White Spotting (W) and Steel genes, which respectively encode the c-kit tyrosine kinase receptor and the c-kit ligand (or Steel factor), impair the development of primordial germ cells (PGCs) in vivo, as well as haematopoietic stem cells and neural crest-derived melanoblasts. Here we use a monoclonal antibody against c-kit tyrosine kinase receptor and recombinant Steel factor to study the c-kit receptor-ligand system in cultured PGCs. In addition, we show that leukaemia inhibitory factor (also known as differentiation inhibitory activity), a factor secreted by STO fibroblasts, can stimulate proliferation of primordial germ cells in vitro.  相似文献   

16.
Meiosis in the female germ line of mammals is distinguished by a prolonged arrest in prophase of meiosis I between homologous chromosome recombination and ovulation. How DNA damage is detected in these arrested oocytes is poorly understood, but it is variably thought to involve p53, a central tumour suppressor in mammals. While the function of p53 in monitoring the genome of somatic cells is clear, a consensus for the importance of p53 for germ line integrity has yet to emerge. Here we show that the p53 homologue p63 (refs 5, 6), and specifically the TAp63 isoform, is constitutively expressed in female germ cells during meiotic arrest and is essential in a process of DNA damage-induced oocyte death not involving p53. We also show that DNA damage induces both the phosphorylation of p63 and its binding to p53 cognate DNA sites and that these events are linked to oocyte death. Our data support a model whereby p63 is the primordial member of the p53 family and acts in a conserved process of monitoring the integrity of the female germ line, whereas the functions of p53 are restricted to vertebrate somatic cells for tumour suppression. These findings have implications for understanding female germ line fidelity, the regulation of fertility and the evolution of tumour suppressor mechanisms.  相似文献   

17.
我们用碱性磷酸酶法对小鼠原始生殖细胞的发生部位和迁移路线进行了研究。在7天18小时的胚胎中没有发现原始生殖细胞,至8天8小时,在尿囊柄基部和原条尾端出现了成群集中的原始生殖细胞,这时原始生殖细胞总数目不超过100个。9天,原始生殖细胞沿后肠在肠壁内胚层细胞之间向前迁移。9天10小时部分原始生殖细胞进入背肠系膜。甲苯胺蓝染色显示原始生殖细胞嗜碱性强,与周围体细胞有着明显差别,其分布位置与碱性磷酸酶法显示出的位置一致。本实验表明,小鼠原始生殖细胞的最早出现部位是在尿囊柄基部。  相似文献   

18.
Generation of pluripotent stem cells from adult human testis   总被引:2,自引:0,他引:2  
Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.  相似文献   

19.
The neural fate is generally considered to be the intrinsic direction of embryonic stem (ES) cell differentiation. However, little is known about the intracellular mechanism that leads undifferentiated cells to adopt the neural fate in the absence of extrinsic inductive signals. Here we show that the zinc-finger nuclear protein Zfp521 is essential and sufficient for driving the intrinsic neural differentiation of mouse ES cells. In the absence of the neural differentiation inhibitor BMP4, strong Zfp521 expression is intrinsically induced in differentiating ES cells. Forced expression of Zfp521 enables the neural conversion of ES cells even in the presence of BMP4. Conversely, in differentiation culture, Zfp521-depleted ES cells do not undergo neural conversion but tend to halt at the epiblast state. Zfp521 directly activates early neural genes by working with the co-activator p300. Thus, the transition of ES cell differentiation from the epiblast state into neuroectodermal progenitors specifically depends on the cell-intrinsic expression and activator function of Zfp521.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号