首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究瓦斯矿井本煤层准确测定瓦斯有效抽采半径问题,提出了利用吨煤瓦斯抽采量计算钻孔瓦斯有效抽采半径的测定方法.基于瓦斯钻孔衰减负指数规律建立钻孔瓦斯抽采模型,解算出吨煤瓦斯抽采量,并与其煤层原始瓦斯含量对比,得出煤层残存瓦斯含量Wc和抽采率η,以此判断钻孔瓦斯有效抽采半径,只有同时满足{Wc≤8m3/t∩η≥30%},才为钻孔瓦斯有效抽采半径.研究结果表明:随着预抽时间延长,钻孔瓦斯有效抽采半径逐渐增大,直至极限抽采半径.通过工程实践,分析了不同时间的有效抽采半径,为瓦斯矿井抽采工作提供了可靠的抽采参数,具有实际应用价值.  相似文献   

2.
为准确地确定顺层钻孔抽采瓦斯的有效半径,结合实际阳泉矿区某矿煤层赋存参数条件,运用FLUENT软件对单个钻孔和多个钻孔抽采下的煤层瓦斯渗流场进行了数值模拟分析。结果表明:该工作面抽采时间60 d的单个钻孔理论瓦斯有效抽采半径为1.73 m;多钻孔抽采条件下相邻钻孔的间距对瓦斯渗流场的影响具有一定的规律;数值模拟结果与实测结果具有较好的一致性。  相似文献   

3.
为了准确考察保护层开采条件下被保护层地面钻孔有效抽采半径,从而为合理布置地面钻孔提供依据,对现有测定地面钻孔有效半径存在的问题进行了分析。基于瓦斯流动理论和煤层瓦斯抽采量、抽采率等在防治煤与瓦斯突出等瓦斯灾害以及煤层气开发和利用的要求,在保证煤层瓦斯预抽率大于等于30%和煤层瓦斯含量小于等于8 m3/t条件下,提出了基于考察地面钻孔抽采瓦斯量测定地面钻孔有效半径的新方法,接下来应用该方法对地面钻孔有效抽采半径进行了计算。研究结果表明:基于钻孔瓦斯抽采量测试新集一矿北中央采区131105工作面地面1#、2#、3#和4#钻孔有效抽采半径分别为85 m、55 m、75 m和115 m,并验证了示踪技术法测定的地面钻孔有效抽采范围内抽采指标不达标。  相似文献   

4.
钻孔抽采有效半径是瓦斯抽采设计的基础参数及钻孔布置间距确定的重要依据,其影响因素众多。为理清各影响因素,文章建立了顺层钻孔周围瓦斯流动规律的固气耦合模型,运用COMSOL Multiphysics从煤层赋存参数、抽采参数两个方面对模型进行解算。结果表明:煤体赋存参数中,煤层初始渗透率起主控作用,其次是煤层初始瓦斯压力,煤层埋深通过压实煤体减小煤层渗透率影响抽采有效半径;抽采参数中,在同一煤层,有效预抽期内抽采时间很大程度上控制着抽采有效半径,钻孔直径影响程度相对抽采时间减小,抽采负压影响不明显。  相似文献   

5.
煤层钻孔卸压效果影响因素分析   总被引:1,自引:0,他引:1  
钻孔卸压抽采瓦斯是解决瓦斯灾害的有效方法之一。为了研究地应力等因素对煤层钻孔卸压效果的影响,首先从理论上分析了钻孔周围的应力和卸压区范围,利用弹塑性力学理论得到了轴对称情况下卸压区半径的解析解,然后讨论了影响卸压区范围的地应力等各种因素并利用RFPA^2D分别进行了数值分析。结果表明:(1)非轴对称地应力条件下,卸压区半径随着埋深的增大而增大;(2)卸压区半径随着煤层强度的增大而减小;(3)卸压区半径随着煤层周围地应力以及钻孔孔径的增大而增大。  相似文献   

6.
钻孔卸压抽采瓦斯是解决瓦斯灾害的有效方法之一。为了研究地应力等因素对煤层钻孔卸压效果的影响,首先从理论上分析了钻孔周围的应力和卸压区范围,利用弹塑性力学理论得到了轴对称情况下卸压区半径的解析解,然后讨论了影响卸压区范围的地应力等各种因素并利用RFPA^2D分别进行了数值分析。结果表明:(1)非轴对称地应力条件下,卸压区半径随着埋深的增大而增大;(2)卸压区半径随着煤层强度的增大而减小;(3)卸压区半径随着煤层周围地应力以及钻孔孔径的增大而增大。  相似文献   

7.
基于煤层瓦斯渗透各向异性特征,在九里山煤矿煤层进行了180d井下瓦斯抽采有效影响半径测试,同时,建立煤层瓦斯各向渗透异性的气-固耦合渗流模型,数值模拟了瓦斯抽采有效半径的时变规律,分析了抽采钻孔的合理布置方式。研究结果表明:煤层平行层理方向的渗透率是垂直层理方向的渗透率的2.6倍左右。煤层钻孔不同方向有效抽采半径均随抽采时间增加而增大,且与预抽时间满足幂指数关系,数值模拟结果与井下现场测量一致。有效抽采距离在平行层理方向最大,垂直层理方向最小,有效抽采区域为椭圆形。据此确定了不同预抽时间煤层抽采钻孔的合理间距,并针对九里山煤矿二1煤层计算分析了预抽时间与百米钻孔数的关系。  相似文献   

8.
张永红 《科技资讯》2014,(28):65-66
随着采掘深度的增加,具有开采保护层条件的突出矿井越来越少,这就使得矿井突出危险日益严重。而煤矿瓦斯抽采是防治煤与瓦斯突出、降低矿井瓦斯涌出量和防止瓦斯爆炸的重要措施。衡量瓦斯抽采工作优劣的两个主要指标是瓦斯抽采率和瓦斯抽采量。为了确定穿层钻孔预抽煤巷条带瓦斯的合理参数,利用钻孔瓦斯流量、残余瓦斯含量等考察指标,以山西保安煤矿为试验地点,经过现场考察以及对测定数据的分析,最终确定了该矿井15#煤层直径为φ94 mm穿层抽采钻孔的有效抽采半径。  相似文献   

9.
本煤层单一顺层瓦斯抽采钻孔的渗流场数值模拟   总被引:1,自引:0,他引:1  
针对本煤层瓦斯抽采钻孔的合理布置问题,通过建立钻孔抽采瓦斯的渗流场控制方程和煤层变形场控制方程,结合钻孔抽采瓦斯的初始及边界条件,推导出钻孔抽采瓦斯渗流的固气耦合数学模型.以石壕煤矿本煤层单一顺层钻孔瓦斯抽采为工程实例,基于研究区域的煤层瓦斯赋存特征,采用数值模拟计算方法,获得了本煤层单一顺层钻孔周围煤层瓦斯压力、煤层瓦斯渗透率、煤层瓦斯渗流速度和煤层变形的分布规律.确定了本煤层单一顺层钻孔抽采瓦斯的有效影响半径,从而为本煤层单一顺层瓦斯抽采钻孔的优化布置提供了依据.研究结果表明,石壕煤矿本煤层单一顺层钻孔抽采瓦斯的有效半径分别为4 m左右;在延长钻孔抽放时间不到20%的情况下,减少了钻孔工程量50%左右,抽采效果良好.  相似文献   

10.
针对高瓦斯中低渗透率厚煤层工作面常规预抽钻孔预抽浓度低、钻孔衰减系数大、瓦斯预抽时间长等难题,以保德煤矿8号煤层为研究对象。通过8号煤层渗透率各项异性实验分析和现场测试,对8号煤层钻孔布孔方位以及封孔工艺最优参数进行研究。结果表明:预抽钻孔与煤壁裂隙呈90°,钻孔倾角为-6°时钻孔抽采效果最好;采用新材料+囊袋作为封孔材料,封孔距离8~16 m时,增大压力和“两堵两注”的注浆方式,能有效地提供封孔的气密性。通过3种不同的测试方法,确定4个月时的钻孔抽采有效半径约为4 m, 6个月有效抽采半径为4.5 m。以此为依据,得出工作面瓦斯抽采钻孔最佳布置参数。研究成果为高瓦斯低渗透率厚煤层工作面预抽钻孔设计提供了参考依据。  相似文献   

11.
顺层钻孔瓦斯抽采是煤矿瓦斯灾害防治的主要技术措施,其中钻孔封孔质量是决定瓦斯抽采效果的重要影响因素。基于抽采钻孔漏气量计算数学模型,分析了封孔长度和抽采负压对钻孔漏气量的影响。现场试验和数值模拟表明,增加顺层钻孔的封孔长度能够有效减少钻孔漏气量,最佳封孔长度为8~10m;提高抽采负压不能有效增加钻孔的瓦斯抽采量,反而一定程度上增加了钻孔的漏气量,并降低了抽采瓦斯浓度。研究成果为顺层钻孔提高瓦斯抽采效果提供了理论依据。  相似文献   

12.
为增加低渗透高瓦斯煤层的透气性,提高瓦斯利用率和抽采效率,提出低渗透煤层复合增透的方法.利用RFPA2D-Flow和FLAC3D软件分别对水力压裂裂缝的起裂、延伸与扩展规律和CO_2增透钻孔内提前制造不同长度的预裂缝对爆破致裂增透效果的影响情况进行模拟.进行井下复合增透效果工业试验,运用瓦斯压力降低法分析预裂后煤层瓦斯抽采半径.结果表明:模拟注水压裂27 PMa时,割缝半径约2 m,随着煤壁预裂缝长度增加,CO_2爆破致裂影响半径呈线性递增的趋势.现场复合增透后煤层抽采率显著提高,有效半径由原来单一水力压裂的2 m增加到7 m左右.  相似文献   

13.
为提高低透煤层瓦斯抽采效果,提出了一种掏穴扩孔增透技术。以李嘴孜矿A1煤为研究对象,通过现场测试与分析,考察了A1煤掏穴扩孔前后瓦斯抽采影响半径,抽采浓度和抽采纯量;同时采用RFPA2D-Flow模拟软件模拟了扩孔前后煤层裂隙的起裂及扩展过程,分析了掏穴扩孔钻孔对煤层透气性的影响。结果表明:掏穴扩孔钻孔增加了钻孔内壁表面积,增大周围煤体裂隙,使得周围煤体中的应力得到释放。掏穴扩孔后,瓦斯抽采影响半径提高了1.3倍,抽采浓度提高1.9倍,抽采纯量提高了2.3倍,因此,掏穴扩孔钻孔具有提高钻孔瓦斯抽采效果,达到快速消突的目的。  相似文献   

14.
为研究顺层双钻孔抽采过程中煤层瓦斯压力和渗透率的变化规律,将煤体视为双重孔隙结构介质,结合气体滑脱效应等因素的影响,建立了基于双孔结构特征的含瓦斯煤气固耦合作用模型,并通过有限元方法进行了数值解算分析。结果发现,瓦斯抽采时,两钻孔之间区域的瓦斯压力下降幅度明显大于其他区域,而在两钻孔区域的外侧至研究区域的边界处均出现了较为显著的瓦斯压力梯度;当钻孔间距为5 m和10 m时,同等条件下相较于钻孔间距为2 m和15 m的情况,煤层渗透率相对较大,而且瓦斯抽采有效区域分布更为均匀。同时,当钻孔间距小于5 m时,有效的瓦斯抽采影响区域会出现严重重叠现象,增加施工成本,而当钻孔间距大于10 m时,煤层中会产生一定程度的瓦斯抽采盲区,因此,5~10 m可以作为瓦斯抽采钻孔的合理布置间距。  相似文献   

15.
为解决"U"型通风存在的上隅角瓦斯积聚及采空区瓦斯涌出等问题,研究利用大直径钻孔(φ550 mm)抽采采空区瓦斯技术,该技术通过低负压、高流量对采空区瓦斯进行抽采,从本质上改变采空区漏风流流场,从而降低上隅角瓦斯浓度及减少采空区瓦斯涌出.分析了大直径钻孔抽采上隅角瓦斯原理,从钻孔及护管参数、护管施工技术及参数、封孔工艺三方面研究了大直径钻孔抽采技术,并在中能矿2201工作面应用以抽采采空区瓦斯,测试确定了瓦斯钻孔抽采浓度随着工作面与钻孔的距离的变化关系,确定了最佳钻孔间距为20 m,开孔高度1.2 m可将上隅角瓦斯体积分数控制在0.28%~0.79%,钻孔交替时上隅角瓦斯体积分数控制在0.8%之内.  相似文献   

16.
瓦斯抽采对于立井揭突出煤层起到重要的作用,准确的确定钻孔瓦斯有效抽采半径和合理的在待抽煤层中布置抽采钻场对煤层消突具有关键性作用。基于多孔介质中流体流动达西定律理论,采用COMSOL Multiphysics软件对该煤层瓦斯抽采进行了模拟。模拟结果表明,此煤层的瓦斯有效抽采半径为3m,随着抽采时间的增加,煤层瓦斯压力逐渐的降低,但降低的速率会逐渐的减小。瓦斯抽采30天后,其残余的瓦斯压力为0.18MPa,这与现场实测的最大残余瓦斯压力0.2MPa相接近,这说明了模型的可信性,其模拟结果可为瓦斯抽采设计提供参考。  相似文献   

17.
以张集矿1211工作面为背景,分析了不同钻孔间距、抽放负压、钻孔直径、以及不同抽放时间下瓦斯流场的分布,得到了高位钻孔瓦斯抽放的主要参数对瓦斯抽放效率的影响规律,并根据其结果设计了高位钻孔钴场.计算结果表明:当钻孔间距从1 m减小到0.5 m时,抽放率明显增加;当抽放负压降到一定值时,对抽放率影响不大,应取20~30kPa比较合理;钻孔直径越大,瓦斯抽放率越高.  相似文献   

18.
为了探讨顺层瓦斯抽采时的瓦斯渗流运移规律,提高低渗透煤层的抽采效率,运用弹塑力学理论,基于煤体骨架有效应力的变形特性,利用Kozeny-Carman方程进行理论推导,建立了钻孔周围煤体弹性形变与塑性形变的渗透率与孔隙率动态变化模型.结合多孔介质渗流力学理论,建立了钻孔抽采瓦斯渗流固-气耦合模型.针对新景矿9#煤的地质条件,运用COMSOL计算软件,对其耦合模型进行数值计算,得出了布孔间距与单钻孔有效抽采半径之间的关系.模拟结果表明:随着钻孔不断抽采,钻孔瓦斯抽采量初期比较大并能维持一段时间,随后将逐渐减小,最后接近稳定值,同时钻孔有效抽采半径也逐渐变大,但变化的程度越来越小.通过现场实际运用,验证了该模型与关系式的有效性与正确性.  相似文献   

19.
煤层钻孔瓦斯抽放数值模拟   总被引:3,自引:0,他引:3  
为了寻求合理的钻孔抽放参数,采用数值模拟的方法,应用计算流体力学软件fluent6.3建立了钻孔瓦斯抽放流动模型,通过气体渗流理论模拟抽放过程瓦斯流动规律,分析了抽放负压和煤层渗透率对瓦斯抽放效果的影响规律。结果表明:瓦斯抽放有效半径为2 m左右,抽放负压对抽放半径的影响不是很明显;瓦斯抽出量随抽放负压的升高而增加;煤层渗透率对瓦斯抽放量的影响比较大。模拟的抽放影响半径与现场实测结果基本一致。该模型可以对现场瓦斯抽放提供理论指导。  相似文献   

20.
基于现场测定瓦斯抽采有效影响半径的工作周期长、工程量大、实施成本高且成功率低的弊端,建立了考虑瓦斯孔隙压力和吸附膨胀应力作用下含瓦斯煤岩体的固-气耦合运移方程,同时提出以临界瓦斯压力pc和临界瓦斯含量wc联合确定有效影响半径的准则,克服了传统单一指标下有效影响半径估计时经常偏大的问题。采用该理论模型可以计算不同预抽期内,煤层瓦斯压力、瓦斯含量和瓦斯预抽率等动态渗流参数的变化,并基于计算结果揭示了瓦斯抽采有效影响半径与预抽时间成正指数函数的关系,可以方便地确定不同预抽期内瓦斯抽采钻孔的有效影响半径,为钻孔参数的合理设计和布置提供了理论参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号