首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
采用碳热还原-磁选富集镍的工艺处理低品位红土镍矿,以活性炭粉为还原剂,在还原球团内加入添加剂A以促进还原球团中金属晶粒的生长及磁性物质与非磁性物质的磁选分离,使红土镍矿在低于传统的熔炼温度下进行还原反应,可大大降低能量消耗.研究结果表明,最佳反应条件:还原温度为1 320℃,还原时间为1 20 min,还原剂与添加剂的质量分数分别为3%及5%;添加剂可促进金属晶粒的聚集,富集的金属晶粒更易于磁选分离;还原产品镍铁合金中镍的质量分数可达8.31%,矿石中镍的回收率可达95.44%,金属镍得到了富集.本工艺具有流程短、操作简单、能耗低及镍铁合金的经济价值高等优点.  相似文献   

2.
采用内配煤造球还原焙烧的方法对某高硅低品位铁矿进行处理,并加入钠盐强化还原,研究温度、时间和添加剂质量分数对还原的影响,并采用烟气分析仪研究含钠盐对还原过程的影响。计算CO体积分数对FeO还原和铁橄榄石(Fe_2SiO_4)生成反应的热力学影响,并采用SEM和XRD等分析还原球团的微观结构和成分。研究结果表明:还原中间产物FeO可与Si O2反应生成难以再还原的铁橄榄石(Fe_2SiO_4);提高还原反应体系中CO的体积分数可以促进FeO的还原和减少铁橄榄石(Fe_2SiO_4)的生成;钠盐能够有效地促进球团中碳的气化反应,提高球团内CO的体积分数,从而促进FeO的还原,减少Fe_2SiO_4的生成,进而改善还原效果;当内配煤质量分数(即C与Fe质量比m(C)/m(Fe))为0.4,钠盐质量分数为3%,焙烧时间为30 min以及焙烧温度为950℃时,还原效果最佳,还原球团的金属化率为56.74%,磨矿、磁选后精矿铁品位和铁回收率分别为74.16%和74.57%。  相似文献   

3.
红土镍矿转底炉预还原-电炉熔分制取镍铁合金   总被引:2,自引:0,他引:2  
对某红土镍矿采用转底炉预还原-电炉熔分工艺制取镍铁合金进行研究。实验结果表明:根据矿石性质,选择合适的渣型为SiO2-MgO-CaO-FeO四元渣系,在熔剂石灰配比为25%,还原剂配比为3.5%,预还原温度为1 150℃,预还原时间为30 min,电炉熔分温度为1 450℃,熔分时间为15 min的条件下,经转底炉预还原-电炉熔分后,获得镍质量分数为8.68%、镍回收率97.62%、铁质量分数为86.23%的镍铁合金,该合金可用作不锈钢生产原料。  相似文献   

4.
红土镍矿直接还原焙烧磁选回收铁镍   总被引:5,自引:2,他引:3  
采用添加助熔剂直接还原焙烧-磁选方法,对镍主要以硅酸镍形式存在的低品位红土镍矿中镍和铁的富集进行了研究. 结果表明,同时添加助熔剂,可获得较好的技术指标. 最佳工艺条件为:煤作还原剂,质量分数为15%;KD-2为助熔剂,质量分数为20%;焙烧温度为1200℃;焙烧时间为40min. 在此条件下可以得到镍品位10.83%、铁品位52.87%、镍回收率82.15%和铁回收率54.59%的镍铁精矿. 用X射线衍射(XRD)和透射电镜(TEM)对还原过程中助熔剂和煤的作用机理进行了研究. 发现KD-2可以与原矿中含镍的石英和硅酸盐矿物反应,释放出其中的镍;煤用量太多时可生成部分不含镍的金属铁,会造成镍的回收率降低.  相似文献   

5.
对镍铁矿原料及不同温度还原焙砂进行矿物学研究,探究镍铁矿选择性还原焙烧发生的相变.研究结果表明:镍铁矿主要金属矿物为褐铁矿,其次为赤铁矿;Ni在不含锰的铁矿物中分布较均匀,而在含Mn的铁矿物中分布相对集中,并与Mn伴生.镍铁矿在还原焙烧过程中Fe、Ni和Co随温度升高逐渐发生还原、相转化和迁移富集的过程.选择性还原焙烧必须严格控制焙烧温度,要达到Ni、Co和Fe的选择性还原并形成Ni高、Fe低的合金相和磁铁矿,焙烧温度采用750℃较合适,在该温度下形成的合金相组成为55.55%Ni、9.86%Co及33.99%Fe,Ni的金属转化率为88.49%,铁氧化物主要为磁铁矿.  相似文献   

6.
低品位红土镍矿制备镍精矿的试验研究   总被引:1,自引:0,他引:1  
对某低品位腐殖土型红土镍矿(镍和铁质量分数分别为1.01%和15.72%)进行压块—还原焙烧—磁选试验,研究还原温度、还原时间、复合添加剂用量和预热温度对镍和铁回收效果的影响。研究结果表明:在碱度(即CaO与SiO2质量比)为0.2、复合添加剂质量分数为14%、预热温度为900℃、预热时间为15 min、还原温度为1 250℃、还原时间为35 min、煤与矿质量比为2.7、磨矿细度小于0.074 mm的质量分数为(95±4)%、磁选磁场强度为131.34 kA/m的条件下,获得镍和铁品位分别为4.22%和69.75%的镍精矿,镍和铁回收率分别为92.22%和85.73%;适宜的预热制度有利于团块中镍、铁的富集;复合添加剂促进了镍铁晶粒的聚集、长大,提高了镍、铁回收效果。  相似文献   

7.
从低品位红土镍矿中高效回收镍铁   总被引:5,自引:1,他引:4  
以低品位红土镍矿(w(Ni)=1.52%,w(Fe)=14.08%)为原料,采用一步还原焙烧-磁选工艺制取镍铁合金。考察反应温度、反应时间、还原煤量和复合添加剂对红土镍矿焙烧效果的影响。研究结果表明:在还原煤为20%、复合添加剂为12%、焙烧温度为1 200℃、通N2保护条件下焙烧180 min,原矿中的大部分氧化镍和少量氧化铁得到选择性还原;焙砂水淬急冷后常规磁选,得到Ni质量分数为10.74%,Fe与Ni的质量分数之比为4.5,Ni回收率为86.23%的镍铁精矿,达到从红土镍矿中高效回收镍铁的目的。  相似文献   

8.
煤种对红土镍矿中镍选择性还原的影响机理   总被引:2,自引:0,他引:2  
以某含镍1.86%(质量分数)、铁13.24%(质量分数)的红土镍矿为对象,分别采用石煤和无烟煤作为还原剂,考察了煤种对红土镍矿中镍的选择性还原的影响.结果表明,用石煤作为还原剂能够达到镍选择性还原的目的.X射线衍射及扫描电镜分析研究表明,还原过程中镍、铁先以镍纹石形式存在,随着煤用量增加,逐渐变为以铁纹石形式存在.同时随着煤用量的增加,焙烧后生成的含镍铁矿物中镍的比例逐渐递减,而铁的比例逐渐递增.石煤为还原剂时焙烧产物中主要以镍纹石的形式存在,同时金属铁的生成量比无烟煤作还原剂时低,因此采用石煤作还原剂比无烟煤作还原剂对镍还原具有更强的选择性,可以得到更高镍品位的镍铁精矿.  相似文献   

9.
研究含硼磁铁矿配比对巴西赤铁矿球团生球质量、预热焙烧性能和成品球团冶金性能的影响。结果表明:配加30%和50%(质量分数)含硼磁铁矿后,生球的落下强度增加,爆裂温度显著提高;球团预热温度降低50℃左右,焙烧温度降低120℃以上;成品球团矿还原度从72.40%分别提高到87.95%和78.71%,低温还原粉化指数RDI+3.15从87.79%分别提高到97.38%和99.62%,还原膨胀率从36.25%分别降到12.50%和4.00%;焙烧性能得到提高的原因是Fe3O4氧化生成的新生Fe2O3晶体具有较大的活性,B2O3有利于含硼的镁铁橄榄石液相生成,这两者能够促进球团再结晶和晶粒长大;还原度提高的原因是B3+半径很小,易扩散进入Fe2O3晶格中,产生晶格畸变,使得Fe2O3易于还原;铁酸镁和含硼的镁铁橄榄石液相的生成,有利于还原膨胀和低温还原粉化性能的提高。  相似文献   

10.
使用气基预还原的方法对一种全铁质量分数为3082%,Al2O3质量分数为2332%的高铝铁矿石进行铝铁分离研究.研究结果表明:1#球团于900℃、还原气氛为70%CO(体积分数)+30%H2、还原时间为77min时得到最高还原率7713%;2#球团于950℃、还原气氛为70%CO+30%H2、还原时间为80min时得到最高还原率822%;另外,2#球团在900℃以上还原时所能达到的最高还原率很接近;综合考虑,两种球团的最佳预还原温度为900℃;配加消石灰后,可以破坏原矿中铁、铝、硅之间的嵌布关系.X射线衍射分析结果表明,在还原过程中,出现了难还原的Fe2SiO4相和FeAl2O4相,这是导致还原难以进行的原因.  相似文献   

11.
以Ni和Fe质量分数分别为1.46%和26.68%的红土镍矿为研究对象,进行直接还原焙烧-磁选试验研究,并对焙烧矿进行X线衍射(XRD)与扫描电镜(SEM)分析以研究CaO的作用机理。研究结果表明:使用含CaO的组合添加剂能够达到磁选精矿中镍质量分数为8.58%、回收率为88.15%的最佳试验效果。在直接还原焙烧过程中,添加的CaO能够在焙烧过程中与硅酸盐矿物反应生成辉石、提高含镍硅酸盐的反应活性、促进镍的还原并且能够降低还原过程中NiO与SiO2结合的概率,提高镍的回收率。  相似文献   

12.
生物质合成气直接还原铁矿--生物质复合球团炼铁   总被引:1,自引:0,他引:1  
为了使炼铁工业摆脱对化石能源的依赖及满足越来越严格的环境要求,将生物质能的开发利用与直接还原技术进行集成提出一种新型的绿色炼铁方法.把生物质、铁矿石粉与添加剂混合制取生球团,利用生物质催化气化制备的富氢合成气作为还原剂,生物质的高温燃烧为生球团的预热和预热球团的直接还原提供外加热源.对影响生物质直接还原炼铁的因素,如预热、还原温度及球团粒径进行了研究,发现减小球团粒径、增加预热和还原温度能够提高直接还原铁产品的全铁质量分数及金属化率.当采用品位65.21%的铁精矿为原料,在最优操作条件下(生球团粒径介于8~10 mm之间,900℃预热30 min,1000℃下还原60 min)可制得全铁TFe质量分数为86.1%,金属化率为94.9%的高质量直接还原铁产品.  相似文献   

13.
对隧道窑直接还原焙烧--磁选法处理低品位难选赤铁矿石进行了探讨,重点研究助还原剂NCP的作用及机理.以煤作还原剂,质量分数为20%,CCO和NCP为助还原剂,质量分数分别为15%和5%,在焙烧温度为1200℃,焙烧时间为8 h的条件下,可以得到铁品位92.61%、铁回收率92.38%的铁精矿.利用X射线衍射和扫描电镜对助还原剂NCP的作用机理进行分析.结果表明NCP可以与原矿中石英发生反应,生成硅钠石和钠长石,破坏原矿结构,使还原性气体更易与赤铁矿接触发生还原反应生成金属铁.  相似文献   

14.
采用碳还原-磁选分离-熔炼工艺制备了镍铁合金.考察了在碳还原过程中添加剂的用量、还原温度、还原时间对镍铁的富集的影响.在添加剂和配碳量(质量分数)分别为5%和3%,还原温度1 320℃和还原时间为120min的条件下,磁性产物中镍、铁质量分数分别达到8.31%和71.5%,回收率达到95.44%和99.84%.熔炼后得到镍、铁质量分数分别为10.11%和83.75%的镍铁合金.对有、无添加剂所得还原产物的形态分析表明,自制添加剂对镍铁合金生长具有促进作用.  相似文献   

15.
红土镍矿深度还原-磁选富集镍铁实验研究   总被引:2,自引:0,他引:2  
采用深度还原-磁选工艺,以煤粉为还原剂,添加氧化钙作助溶剂,在微熔化,不完全造渣的条件下,将矿石中镍和铁的氧化物还原成金属镍铁,然后经磁选方法使金属镍铁在磁性产品中得到富集.结果表明,深度还原最佳工艺条件为:还原温度1 300℃,还原时间60 min,配煤过剩倍数2.在此工艺条件下得到镍、铁质量分数分别为5.01%,22.46%的镍铁产品,镍、铁回收率分别为96.05%,79.69%.对深度还原过程研究表明,还原物料中镍和铁以金属合金颗粒形式存在,高温有利于镍铁金属相凝聚,适当延长还原反应时间有利于镍铁颗粒的还原和聚集长大,进而有利于磁选富集.  相似文献   

16.
红土镍矿还原熔炼制备镍铁的试验研究   总被引:1,自引:0,他引:1  
对低铁、高硅、高镁腐殖土型红土镍矿的脱水和碳还原过程进行DTA-TG分析,确定脱水和固体碳还原反应的温度区间。在煅烧-还原熔炼红土镍矿制备镍铁中,针对矿石自然渣型碱度低、黏度及密度大,不利于金属与渣分离及镍回收率提高等问题,采用控制CaO加入量的方法,调节CaO-FeO-MgO-SiO2系炉渣的黏度和密度;探讨还原剂焦粉及CaO用量、温度、时间对熔炼效果的影响。综合考虑镍铁品位和镍的回收率,确定最佳还原熔炼试验条件:焦粉、石灰与矿石质量比分别为9.0%和8.3%,温度为1 550℃,时间为40 min。在最佳试验条件下,产出的镍铁品位为22.0%,镍、钴回收率分别为92.5%和70.0%。  相似文献   

17.
针对转底炉珠铁工艺用还原剂的选择,本文以兰炭、烟煤、无烟煤、木炭、焦粉作为还原剂制备铁矿含碳球团,从反应性和灰熔融性两方面入手,研究在不同还原、熔分温度下,还原剂种类及其粒度对含碳球团还原熔分行为的影响。结果表明,当还原温度较低(1000、1100℃)时,球团金属化率随还原剂反应性的提升而增加;1200℃下还原时,不同种类还原剂球团的金属化率差别不大,均在92%左右。当还原剂粒度从48~180μm降至-48μm,对于反应性较高的兰炭和无烟煤,球团表面裂纹增多,体积明显膨胀,终点金属化率降低,熔分后金属收得率降低;而对于反应性较低的焦粉,球团体积变化不明显,球团终点金属化率升高,熔分后金属收得率升高。综合能耗、熔分效果和经济效益等方面,该工艺适宜的还原剂为兰炭,粒度为48~180μm,适宜的加热制度为:预还原1200℃×15min→熔分1350℃×7min,此条件下球团的金属收得率为96.05%。  相似文献   

18.
为了探究含碳球团还原熔分机理,将分析纯的Fe2O3、氧化物和不同还原剂固结成球并进行等温还原实验,研究了温度、还原时间、配碳量、还原剂种类等条件对球团还原熔分行为的影响.进一步采用X射线衍射、扫描电子显微镜等手段表征了含碳球团在不同还原时间的微观结构及物相变化.实验结果表明:焙烧温度过低或过高含碳球团都不能良好熔分,配碳量增加可以提高球团还原和熔分速率,适宜的温度、碳氧摩尔比、还原剂分别是1400℃、1.2和煤粉.含碳球团还原熔分包括直接还原反应、间接还原反应、碳的气化反应、渗碳反应和铁的熔化反应,最后实现渣铁分离.  相似文献   

19.
研究预还原球团在微波场中的升温特性,考察预还原球团微波加热中对直接还原的影响,分析铁氧化物煤基微波加热的还原行为.研究结果表明:预还原程度越高,球团中的Fe3O4含量逐渐减少,浮氏体和金属铁含量逐渐增多,对微波的吸收性能逐渐减弱,但是仍然具有较好的吸波能力.预还原球团金属化率越高,得到的海绵铁金属化率越高,在预还原球团金属化率为42.85%(质量分数),温度为1 000℃,还原时间为48 min,碳氧质量比为1.75:1时,海绵铁金属化率达到97.29%.随着还原反应的进行,铁氧化物的成分不断改变,金属铁颗粒呈星点状分布于浮氏体之间,但并不会形成致密金属壳,为还原反应中的气体交换创造良好的动力学条件.  相似文献   

20.
石油焦作为工业固体废物,其堆积和储存对生态环境产生巨大的影响。本文对石油焦在低品位红土镍矿与赤泥共还原过程中用作还原剂的可行性及其机理进行了研究。通过研究石油焦用量、焙烧温度和焙烧时间等对红土镍矿与赤泥共还原过程的影响,确定最佳的工艺条件为石油焦用量20wt%、焙烧温度1250°C、焙烧时间60 min。在此条件下,可以获得镍品位1.96wt%、铁品位85.76wt%、镍回收率97.83wt%、铁回收率96.81wt%的镍铁产品。扫描电镜和能谱(SEM–EDS)分析结果表明,红土镍矿与赤泥共还原过程中镍和铁主要以镍铁颗粒的形式存在,镍铁颗粒分布均匀且纯度很高,粒径约30 μm。结果表明,石油焦作为还原剂用于红土镍矿和赤泥共还原是可行的,与无烟煤作还原剂相比,石油焦具有成本低的优点。研究结果不仅为石油焦的利用提供了一个新途径,同时也为缺煤地区红土镍矿与赤泥共还原工艺的利用提供了一种解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号